Functional Performance: Tools, Rigor and Collaboration

David Sellers, Senior Engineer Facility Dynamics Engineering NCB

21st National Conference on Building Commissioning

AIA Quality Assurance

The Building Commissioning Association is a Registered Provider with *The American Institute of Architects Continuing Education Systems (AIA/CES)*. Credit(s) earned on completion of this program will be reported to *AIA/CES* for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with *AIA/CES* for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

21st NCBC Conference

Presentation Description

This presentation uses a case study format to explore functional testing in an existing building commissioning process. Specifically, a functional test is developed to assess the thermal flywheel potential of a small chilled water system. The results are then used to develop control system program modifications that allow a short cycling problem to be resolved while still providing the required environmental conditions inside the facility.

21st NCBC Conference

Learning Objectives

1.

5

At the end of this session, participants will be able to:

- Understand the difference between a functional testing process in an existing building commissioning environment vs. a new construction environment
- 2. Understand that there can be a hierarchy to a functional testing process
- 3. Understand the key elements associated with developing a functional test
- 4. Understand how functional testing can be used as a diagnostic tool in an existing building commissioning process
 - Understand how a functional test can be used to gather useful data in an existing building commissioning process

21st NCBC Conference

The Path to Selecting Equipment and Systems

The New Construction Perspective on Functional Testing

The Existing Building Perspective on Functional Testing

The Existing Building Perspective on Functional Testing

New Construction versus EBCx Testing

New Construction

- Trying to prove design intent
- Demonstrate all elements of the system meet requirements
- Verification and quality assurance process

EBCx

- Trying to understand design
 intent
- Focused on certain elements of the system
- Diagnostic and troubleshooting process

Le Conte Hall

- UC Berkeley Physics
 Department Home
- 148,000 square feet
- Four floors plus basement
- Floors 1 and 2 Classrooms and research
- Floors 3 and 4 Offices, class rooms, informal meeting space
- Interconnected with other physics department buildings
- MBCx program participant since 2009
- MBCx Best Practices Award winner for the 2009 program cycle

Le Conte Hall

- UC Berkeley Physics
 Department Home
- 148,000 square feet
- Four floors plus basement
- Floors 1 and 2 Classrooms and research
- Floors 3 and 4 Offices, class rooms, informal meeting space
- Interconnected with other physics department buildings
- MBCx program participant since 2009
- MBCx Best Practices Award winner for the 2009 program cycle

It Takes a Team to Succeed

Left to Right Anthony Vitan, Eleanor Crump, Julia Gee, Chuck Frost

Le Conte Hall

- UC Berkeley Physics
 Department Home
- 148,000 square feet
- Four floors plus basement
- Floors 1 and 2 Classrooms and research
- Floors 3 and 4 Offices, class rooms, informal meeting space
- Interconnected with other physics department buildings
- MBCx program participant since 2009
- MBCx Best Practices Award winner for the 2009 program cycle

It Takes a Team to Succeed

Left to Right Ancestors of David Sellers, Mark Porter, Ron Simens, Gary Kawabuchi and Mark Arney test a new idea

2004 - 2007 Renovation

- Seismic issues
- Deferred maintenance

H

H

H

- Reconfiguration
- Restoration
- MEP Update

40,000 cfm constant volume reheat, 100% outdoor air AHU for 1st and 2nd floor (basement location)

32,000 cfm constant volume reheat, economizer equipped AHU for 3rd and 4th floor

FUNCTIONAL TEST

Steam fired variable flow heating hot water system (basement location)

Air cooled constant volume chilled water system

A Bit More Information on the Chilled Water System

- 2 50 ton compressors
- Compressors can unload to 25% of capacity
- Compressors equipped with hot gas bypass
- Relatively short piping circuit

FUNCTIONAL TES

Small Load + Large (Relatively) Chiller = Potential Problem

Visit <u>www.Av8rdas.wordpress.com</u> for a larger copy of the system diagram; Link located on the right side of the home page under 03 – Materials from Classes and Presentations

The Problem with Short Cycling

Unresolved short cycling cost impacts

- Less than optimal temperature control
 - IEQ issues in hot and humid climates
 - Product quality issues
 - Ripple effects (other control processes become unstable
- Premature compressor or motor failure
 - Unscheduled outage
 - Unscheduled cost \$20,000 \$40,000 each for the 50 ton compressors on this project

The Problem with Short Cycling

The Research Load is Not the Only Small Load

Non-integrated vs. Integrated

- $Q = 4.5 \times cfm \times \Delta h$
- Q = 4.5 x 30,000 x (25.4 22.8)
- Q = 351,0000 Btu/hr
- Q = 29.3 tons

- Cooling coil load
- $Q = 4.5 \times cfm \times \Delta h$
- Q = 4.5 x 30,000 x (22.8 22.6)
- Q = 27,0000 Btu/hr
- Q = 2.3 tons

Non-integrated vs. Integrated

- Space temperature = 72°F
- Space RH = 50%
- Space enthalpy = 26.4 Btu/lb

- Space Load (average cooling coil leaving conditions)
- $Q = 4.5 \text{ x cfm x } \Delta h$
- Q = 4.5 x 30,000 x (26.4– 22.7)
- Q = 499,500 Btu/hr
- Q = 41.6 tons

Non-integrated vs. Integrated

LOADS

Space	Coil – Non-Integrated	Coil – Integrated
	Economizer	Economizer
41.6 tons	29.3 tons	2.3 tons

- Infinite Capacity Modulation False load
 - No refrigeration compressor can modulate over an infinite range on its own
 - Technology dependent (reciprocating vs. centrifugal vs. scroll vs. screw vs. absorption)
 - System dependent
 - Size of the piping network
 - Relative sizes of the prime movers

- - Serve a recirculating constant volume reheat load
 - Hot gas bypass

- Infinite Capacity Modulation
 - No refrigeration compressor can modulate over an infinite range on its own
 - Technology dependent (reciprocating vs. centrifugal vs. scroll vs. screw vs. absorption)
 - System dependent
 - Size of the piping network
 - Relative sizes of the prime movers

- False load
 - Serve a recirculating constant volume reheat load
 - Hot gas bypass

- Infinite Capacity Modulation
 - No refrigeration compressor can modulate over an infinite range on its own
 - Technology dependent (reciprocating vs. centrifugal vs. scroll vs. screw vs. absorption)
 - System dependent
 - Size of the piping network
 - Relative sizes of the prime movers

- False load
 - Serve a recirculating constant volume reheat load
 - Hot gas bypass
- Lengthen the compressor run cycles and off cycles
 - Anti-recycle timer
 - Thermal flywheels

Not Possible for the Le Conte Hall System

Energy Intensive

Saves \$3,830 per Year

Here's a Question

How much of a thermal flywheel does the existing piping system represent?

How Do We Ask The Building About It?

- We perform a functional test
- Functional test components
 - Statement of purpose
 - Instructions for using the test form
 - Equipment requirements
 - Acceptance criteria
 - Precautions
 - Documentation
 - Procedure
 - Return to Normal and Follow-up

Visit <u>www.Av8rdas.wordpress.com</u> for a copy of the test; Link located on the right side of the home page under 03 – Materials from Classes and Presentations

Facility Dynamics				UCB L	.eCont	e Hall MBC:	
eport generated on 9/1/20	10 Rep	ort Filter For: . Units: Chilled	Water System		rerenceor	al reat Procedure	
Chilled Water System	(HVAC / Coolin	9)		OK?	Party	Initials	
chined water system							
RCx Thermal Rywheel	PreTest	1/12/2010 12:00:00 AM	Pass				
TEST GOALS AND ASSUME	TIONS		Julia and I met with Elanor who took us over to the lab. with the lab staff and verified that we would not disrupt n			to the lab. We me tot disrupt research	
ASSUMPTIONS			by running the test. Chuck Prost and Mark	Porter arriv	ed and we	reviewed the tes	
For the purposes of funct will be made regarding t facility.	onal testing, t he Le Conte c	he following assumptions hilled water system and	procedure with everyor	procedure with everyone.			
 Research activities are will not adversely affect to test. 	such that a los hem should a p	s of chilled water service problem occur during the					
Remarks: Noted that the labs fan coi The lab is controlling the fi The lab is seeing the same	I units are in se an coil units an sort of zone to	tries with the reheat colls so d the fan coll units have var imperature swing that we a	aving the zone, not stand lable speed drives that a re seeing in the reheat co	d-alone as we re running at alls, which the	t had thoug minimum s ty do not co	ht. ipeed. introl.	
RCx Thermal	PreTest	1/12/2010 12:00:00	Pass				
TEST GOALS		· · ·					
 To verify the minimum delivered by the chiller in a 3. To determine the maxi- exist in the system before 4. To quantify the therma- terms of too-hours based the logged temperature r test. 	chilled water a repeatable, re num chilled wa research activi i flywheel repro on the flow rate ise that occurs	temperature that can be eliable, robust manner. ties remperature that can ties will be impacted. eserted by the system in a from our pump test and a over the course of the					
Remarks:							
RCx Thermal Hywheel	PreTest	1/12/2010 12:00:00 AM	Pass				
ACCEPTANCE CRITERIA							
1. This is an information g	athering test a	and as such, there are no					
acceptance criteria. Remarks:							
RCx Thermal Rywheel	PreTest	1/12/2010 12:19:27 PM	Pass				
GENERAL INSTRUCTIONS 1. Review the recommend 2. Document all results a forms provided for the test 3. Review all decisions recommended test seque making the change. Note i	ed test sequent s you proceed to deviate to nos with other any changes mi	to to prior to testing. In the CACEA data base from the procedure or team members prior to ade for future reference.					
tps://wwp.facilitvdvr	amics.com	Projects/CLPrinterFri	endly.aspx?Includei	Parties=Al	LL&Excl	hade 9/1/2(

FUNCTIONAL TESTING IN EXISTING BUILDINGS

Page 1 of 15

Start With A Statement of Purpose

General Guidelines

- Target the effort
- Goal of the test
- Underlying assumptions
- Desired outcome
 - Tie to acceptance criteria

Our Statement of Purpose

- Assess the thermal flywheel represented by the existing piping system
 - Determine the minimum and maximum chilled water temperatures that can be tolerated
 - Quantify the thermal flywheel in terms of ton-hours

Test Form Instructions

General Guidelines

- How should results be documented?
 - Pass
 - Fail
 - Intermediate information
 - Comments
- Date and time stamps
- Initials

Be clear; words have different meanings to different people

Test Form Instructions

General Guidelines

- How should results be documented?
 - Pass
 - Fail
 - Intermediate information
 - Comments
- Date and time stamps
- Initials

Our Instructions

- Review the procedure prior to testing
- Document the results in the CACEA commissioning tool
- Review decisions to deviate from the plan with the team and note changes
- If the test is suspended prior to completion, run through the return to normal procedure

Required Equipment

General Guidelines

- Standard tool set
- Special tools
 - Unusual measurement requirement
 - Critical accuracy requirement
 - Expediency

"I have an appointment to demonstrate our new line of ear protectors."

Required Equipment

General Guidelines

- Standard tool set
- Special tools
 - Unusual measurement requirement
 - Critical accuracy requirement
 - Expediency

Our Equipment

• Standard tool set

Acceptance Criteria

General Guidelines

- Tied directly to the test's stated goals
 - Measured parameters
 - Documented conditions
- Clear and unambiguous terms
- Special documentation requirements
 - Picture
 - Witness signature
 - Control system report
 - Trend data

Acceptance Criteria

General Guidelines

- Tied directly to the test's stated goals
 - Measured parameters
 - Documented conditions
- Clear and unambiguous terms
- Special documentation requirements
 - Picture
 - Witness signature
 - Control system report
 - Trend data

Our Acceptance Criteria

- Information only test; There are no acceptance criteria
 - Acceptance criteria are less common for EBCx testing
 - A similar test in a new construction process may have acceptance criteria

Precautions

General Guidelines

- Safety concerns
 - Protection
 - Comfort level
- Risk management
 - Operational risks
 - Cost vs. benefit
 - Likelihood of the problem
 - Equipment damage
 - Temporary over-rides

Precautions

General Guidelines

- Safety concerns
 - Protection
 - Comfort level
- Risk management
 - Operational risks
 - Cost vs. benefit
 - Likelihood of the problem
 - Equipment damage
 - Temporary over-rides

Our Precautions

- Be careful working around rotating machinery
- Remember that there are other things connected to the system, directly and indirectly when manipulating system parameters
- Exercise caution when driving chilled water temperatures to lower than normal ranges

Documentation

General Guidelines

- What do you need to support the test?
 - Submittals
 - Performance data
 - System diagrams
 - Calibration data
 - Factory start-up data
- What do you need to capture before starting?
 - Nameplate data
 - As found conditions

Our Documentation

- Supporting information
 - Located on the project web portal
 - System diagram
 - Mechanical drawings
 - Control sequences
 - Control shop drawings
 - O&M information and equipment submittal data
- Capture before starting
 - Current set points
 - Lab operating criteria

Prerequisites

General Guidelines

- Conditions necessary to test
 - Weather
 - Operating mode
- System readiness
- People required for testing
 - Owner
 - Contractor/Technicians
 - Code official
 - Factory representative
- Some items may tie back to precautions

Our Prerequisites

- Low load condition required
- Research and other building functions can tolerate loss of chilled water
- Verify staff buy-in/available:
 - Lab
 - Building/campus management
 - Physical plant

Preparation

General Guidelines

- Team members in position
 - Rehearsal
- Monitoring equipment
 - In position
 - Activated
 - Calibrated
- Coordinated with building functions
- As found conditions documented

Preparation

General Guidelines

- Team members in position
 - Rehearsal
- Monitoring equipment
 - In position
 - Activated
 - Calibrated
- Coordinated with building functions
- As found conditions documented

Our Preparation

- Verify system flow rate has been documented via pump test
- Verify logging is working for critical parameters

The Procedure

General Guidelines

- Thinking it through ahead of time is important
- Be clear

Image: State of the second pump size Image: State of the second pump to prevent a chiller safety shut down due to loss of flow. Data Include units Complete Initials, Data and Time size by briefly closing the discharge valve and and documenting the pump differential pressures. Proceed as follows: Image: State of the second pump to prevent a chiller safety shut down due to loss of flow. Image: State of the second pump to prevent a chiller safety shut down due to loss of flow. Briefly close the discharge valve and document: Image: State of the second pump to prevent a chiller safety shut down due to loss of flow. Image: State of the second pump to prevent a chiller safety shut down due to loss of flow. Pump suction pressure Image: State of the second pump to pressure pressure Image: State of the second pump to pressure pressure Pump discharge valve to original position. Image: State of the second pump to pressure pressure Image: State of the second pump to pressure pressure Pump discharge valve to original position. Image: State of the second pump to pressure pressure Image: State of the second pump to pressure pressure Pump discharge valve to original position. Image: State of the second pump to pressure pressure Image: State of the second pump to pressure Pump discharge valve to original position. Image: State of the second pump to pressure pump to pressure Image: State of the second pump to pressure Image: State of the second pump to pressure	Requirement	Data Completed	
Size 20. Perform a shut off test to verify the pump size by briefly closing the discharge valve and and documenting the pump differential pressures. Proceed as follows: Document discharge valve position Start the second pump to prevent a chiller safety shut down due to loss of flow. Briefly close the discharge valve and document: Quertion pressure Pump suction pressure Pump discharge pressure Comparison Return discharge valve to original position. Comparison	20. Perform a shut off test to verify the pump	Requirement Inclu	Data Completed ude units Initials, Date and Time
Document discharge valve positionImage: constraint of the second pump to prevent a chiller safety shut down due to loss of flow.Briefly close the discharge valve andImage: constraint of the second pump to pressure and the second pump suction pressurePump suction pressureImage: constraint of the second pump discharge pressureReturn discharge valve to original position.Image: constraint of the second pump to pressure	Size	20. Perform a shut off test to verify the pump size by briefly closing the discharge valve and and documenting the pump differential pressures. Proceed as follows:	
Start the second pump to prevent a chiller safety shut down due to loss of flow.Briefly close the discharge valve and document:Dump suction pressurePump discharge pressureReturn discharge valve to original position.		Document discharge valve position	
Briefly close the discharge valve andImage: Close the discharge valve anddocument:Image: Close the discharge valve to pressurePump suction pressureImage: Close the discharge pressurePump discharge pressureImage: Close the discharge valve to original position.Return discharge valve to original position.Image: Close the discharge valve to original position.		Start the second pump to prevent a chiller safety shut down due to loss of flow.	
document:		Briefly close the discharge valve and	
Pump suction pressure Pump discharge pressure Return discharge valve to original position.		document:	
Pump discharge pressure Return discharge valve to original position.		Pump suction pressure	
Return discharge valve to original position.		Pump discharge pressure	
		Return discharge valve to original position.	

FUNCTIONAL TESTING IN EXISTING BUILDINGS

The Procedure

General Guidelines

- Thinking it through ahead of time is important
- Be clear
- Include cross-references
 - Multiple indications of results
 - Take more data than you need

Visit <u>www.Av8rdas.wordpress.com</u> for a copy of the test; Link located on the right side of the home page under 03 – Materials from Classes and Presentations

Our Procedure

- Run the supply water temperature as far down as possible with out nuisance safety trips
- Monitor the zone temperatures
 - When researchers indicate they are concerned:
 - Document the cycle time
 - Document the chilled
 water temperature
- Run the chilled water temperature back down and document the run cycle time

Return To Normal and Follow up

General Guidelines

- Don't take off for home as soon as you've finished the test!
 - Release manual over-rides
 - Return set points to normal
 - Wait to make sure things are working properly!

Return To Normal and Follow up

General Guidelines

- Don't take off for home as soon as you've finished the test!
 - Release manual over-rides
 - Return set points to normal
 - Wait to make sure things are working properly!
- Did all go as planned?
 - Does the data make sense?
 - Is it telling you something that requires immediate action?
 - Are your documentation needs covered?
- Issue preliminary reports

Return To Normal and Follow up

General Guidelines

- Don't take off for home as soon as you've finished the test!
 - Release manual over-rides
 - Return set points to normal
 - Wait to make sure things are working properly!
- Did all go as planned?
 - Does the data make sense?
 - Is it telling you something that requires immediate action?
 - Are your documentation needs covered?
- Issue preliminary reports

Our Return to Normal

- Release any manual over rides and return set points to normal settings
- Retrieve and save trend data
- Document the results on the web portal
- Notify contractors and UCB of any issues that were discovered

File Edit Reorder Control Program Options Microblocks Custom Microblocks Fayorites Window Help

The intent of the off delay is to ensure that the chilled water flow is maintained through the pump down cycle when the chiller is shut down and to provide for a "bumpless" transition between operating modes.

Opportunity 1 - Captured

Opportunity 2 - Identified

Unnecessary Hot Gas = Unrealized Savings

Good News

- Flywheel cycle captures 26,900 kWh/\$2,690 of savings via the MBCx project
 - Testing performed as part of the general MBCx effort
 - Programming modified "on the fly"
- Additional savings potential justifies a factory service call
 - Perform routine checks and maintenance
 - Optimize set points
 - Optimize controls

Bad News

 11,404 kWh/\$1,140 of savings "left on the table

Visit <u>www.Av8rdas.wordpress.com</u> for the complete story

How Can the Functional Testing Guide Help?

	Component Level Test	
Functional Testing and Design Guides - Microsoft Internet Explorer Adress ② CADacuments and Settings/Deslers/Wy Documents/Technical Library/02-28-06 FT Guide/ft);		pier 🚉 Peci
File Edit View Favorites Tools Help Coogle V V G Search V S PageRank S 308 blocked M Check	Project Name	
🕞 Back 🔻 🕥 👻 😫 🐔 🔎 Search 👷 Favorites 💕 Media 🏈 😞 🗸	System	
Eurotional	Component or function to be tested	
Home About the Functional Testing Guide: Fundamentals to the Field Functional Testing Guide: Fundamentals to the Field Functional Testing Guide (FTG) is a practical tool for de sample tests for air handlers, chillers, boilers, condensers, a publicly available tests with practical advice cn acceptance (view online opens a new window/tab. Download coming soon.)	This form is intended to guide the user through a component le field. In general, it's purpose is to help the user quickly think provides general guidance, a place to outline the proposed tes results. It can be filled out electronically and then printed for and then filled in by hand. In the electronic version, the secon for using the form, many of which are linked to the section the example of the form filled out for testing a freezestat. Purpose: Briefly describe the purpose of the test to be perfor	evel test that is done "on-the-fly" in the through the test prior to executing it. It t procedure and a place to document the use, or the blank form can be printed out d tab of the workbook contains guidelines y reference. The third tab contains an med.
Functional Testing Guide: Checklist Tool		
Functional Testing Guide: Checklist Tool Coming soon! Streamlines access to information in the Function warious system components covered in the + (G and provide) view online Or Download		
Control System Design Guide		
 Control System Design Guide Provides methods and recommendations for the control system provides a toolbox of templates for improving control system. (View online opens a new window/tab. Download coming soon.) View online 	Instructions: Provide instructions regarding how the test resu follow up actions are necessary.	tls should be documented and what (if any)
E	NOTIONAL TEOTING IN EVICTING DUILD	NOC

THANK YOU

David Sellers, Senior Engineer Facility Dynamics Engineering

NW Satellite Office DSellers@Facility Dynamics.com Office: (503) 286-1494 Cell: (503) 320-2630 www.FacilityDynamics.com

Technical blog on WordPress at Av8rdas.Wordpress.com

BC A™

Building Commissioning Association

SUPPLEMENTAL INFORMATION

Integrated vs. Non-Integrated Economizer Operation

FUNCTIONAL TESTING IN EXISTING BUILDINGS

FUNCTIONAL TESTING IN EXISTING BUILDINGS

FUNCTIONAL TESTING IN EXISTING BUILDINGS

ALTITUDE: SEA LEVEL BAROMETRIC PRESSURE: 29.921 in. HG ATMOSPHERIC PRESSURE: 14.696 psia

Visit www.Av8rdas.wordpress.com for a Resource List with links to free coil modeling software; Link from the right side of the opening page under 01 -Commissioning Resources

	_	
General Inform	nati	on
Project Name	1	Integrated vs
Coil Item No.	:	No-Integrated
Coil Tag	1	
Date	:	04/04/2013 0
Model No		CW58FH144
Coil Construc	tion	
Coils/Bank	;	2
Fin Type	:	58 1.50 x 1.3
Fin Height	:	33
Fin'd Length	:	144
Rows Deep	:	6
Fins/Inch	:	8
Circuiting	1	Half
Tube Material	:	Copper
Tube Thick	:	0.020
Fin Material	:	Aluminum
Fin Thick		0.0060
Allow OppEnd	:	No
Coil Performa	nce	l.
Model No.	:	CW58FH144
Rows / FPI	:	6/8
Circuiting	:	Half
Total Cap	1	344,781
Sens Cap	:	344,781
Lvg DB/WB	:	57.9/54.5
Face Velocity	:	454.5
Standard APD	:	0.30
Lvg Fluid	:	63.8
Fluid Flow	:	50.0
Fluid PD	:	9.40

IGAESI

50		55	

Fluid Selection Program Version 2.4.0

Nonintegra -				
8:30:48				
	Airside	_	0.0184	
0	Airflow	:	30000	SCFM
Flat	Altitude	;	0	Feet
inch	Ent. DB/WB	:	68.4 / 58.5	°F
inch	Cap Reg'd	:		Btu/Hr
	LDB/LWB Req'd	:	58.0 /	۴F
	Fluid Side	-		
	Fluid	:	Water	
inch	Ent Fluid Temp	:	50	°F
	Lvg FLuid Temp	:		°F
inch	Fluid Flow Rate	:	50	GPM
	Additional Cons	tru	ction Notes	
03300011R	Coil Coating	:	None	
	Casing Mat'l	:	Galvanized Ste	el
	A		F1	

Rows / FPI	:	6/8	
Circuiting	:	Half	
Total Cap	:	344,781	Btu/Hr
Sens Cap	:	344,781	Btu/Hr
Lvg DB/WB	:	57.9/54.5	°F
Face Velocity	:	454.5	SFPM
Standard APD	:	0.30	in. w.c.
Lvg Fluid	:	63.8	°F
Fluid Flow	:	50.0	GPM
Fluid PD	:	9.40	ft H2O
Fluid Velocity	:	2.48	FPS
Conn Size Dry Weight		(1) 1.50" 550	Lbs

Coil Coating	;	None
Casing Mat ¹	:	Galvanized Steel
Casing Type	:	Flanged
Conn. Mat'l	2	Copper
Conn. Type	:	MPT

FUNCTIONAL TESTING IN EXISTING BUILDINGS

FUNCTIONAL TESTING IN EXISTING BUILDINGS