Existing Building Commissioning (EBCx)

Lab: Hydronic Valve Types & Properties

Lab Overview

- Valve functions
- Types of valves commonly used in buildings
- Key valve components
- Valve selection
- Summary

Valve Functions

What roles do valves play in hydronic systems?

Valve Functions

What roles do valves play in hydronic systems?

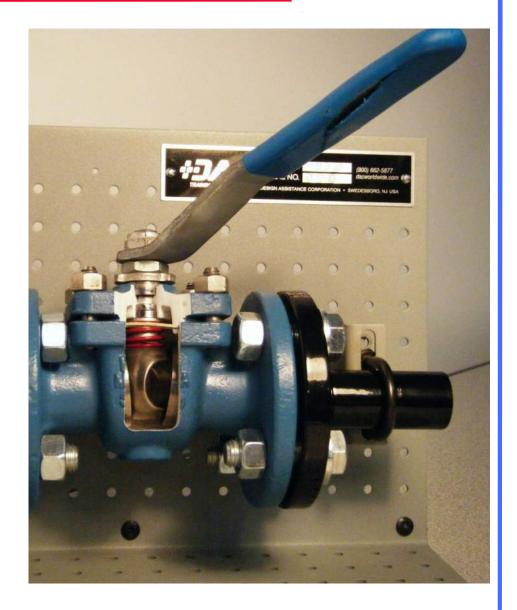
- Start or stop flow; i.e., 2-position
- Regulate or throttle flow; i.e., modulating
- Balance flow
- Prevent reverse flow; e.g., check valve
- Change flow direction; e.g., diverting
- Limit system pressure; e.g., PRV
- Limit system flow

In hydronic systems, a value is any device that regulates or stops the flow of water.

Valves in Building Mechanical Systems

What building systems include hydronic valves?

- Chilled water
- Heating hot water
- Steam and steam condensate
- Domestic hot water
- Domestic cold water
- Industrial water (e.g., DI and RO water)
- Grey water
- Wastewater


Common Valve Types

- Ball Valve
- Butterfly Valve
- Gate Valve
- Plug Valve
- Globe Valve
- Check Valve
- Pressure Reducing Valve
- Flow Balancing Valve
- Flow Control Valve
- Other

Ball Valve

Ported ball regulates flow through the valve.

Turning the handle 90° moves the value from open to closed.

Ball Valve

Animation of valve operation.

Ball Valve (cont'd)

Common uses?

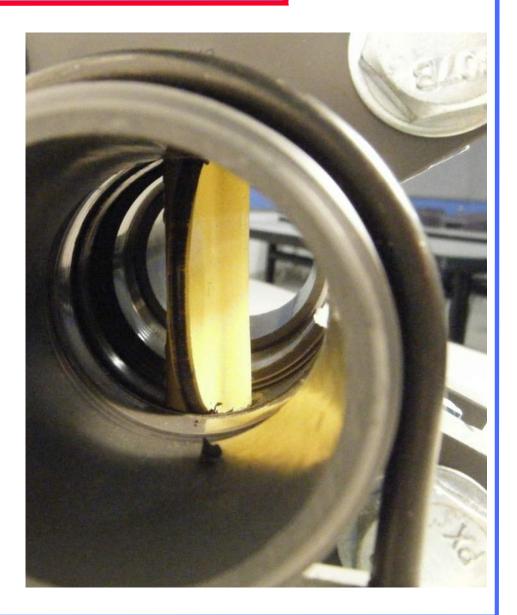
- Manual isolation in small pipe sizes; e.g., 2" and under
- Modulation with 90° actuators; usually with ported ball

Butterfly Valve

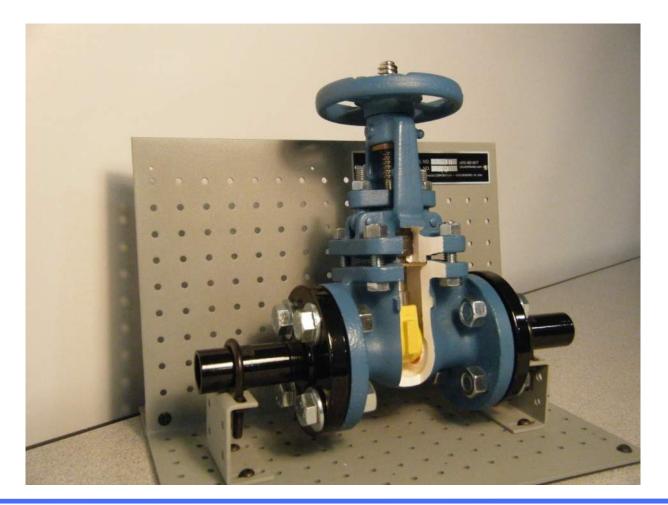
Rotating disk regulates flow through the valve.

Turning the handle 90° moves the valve from open to closed.

Butterfly Valve



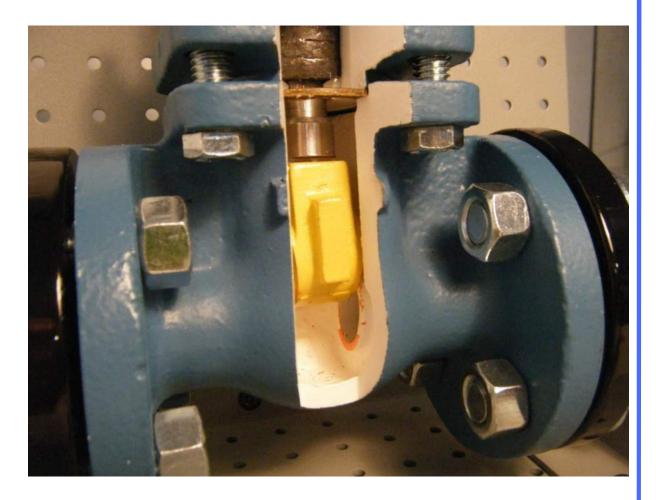
Butterfly Valve (cont'd)


Common uses?

 When a compact installation is needed
 Modulation with 90° actuators

Gate Valve

Wedge or disk moves between machined surfaces perpendicular to the water flow path.


Gate Valve

Animation of valve operation.

Gate Valve (cont'd)

Common use? Shut off flow

Plug Valve

Ported plug turns 90° to control flow.

Plug Valve

Animation of valve operation.

Plug Valve (cont'd)

Common use?

- Shut off flow
- Modulate flow with custom orifice
- Gas shutoff with lubricated plug

Globe Valve

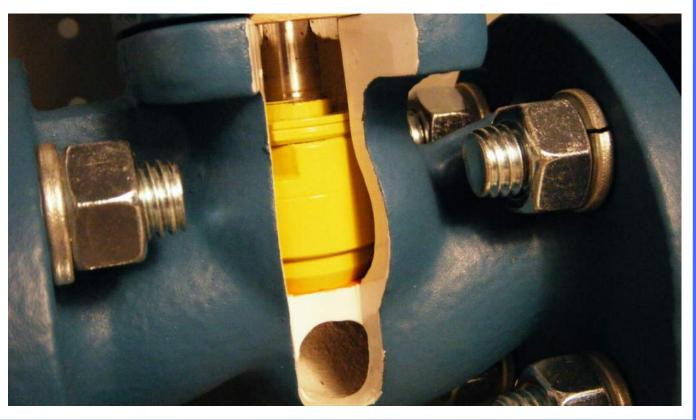
Circular disk, or globe, moves perpendicular to flow.

Disk seats in an annular ring.

Globe Valve

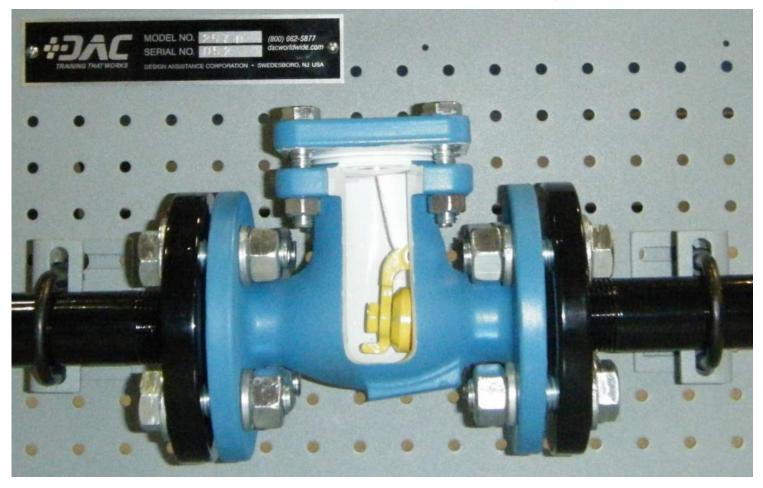
Animation of valve operation.

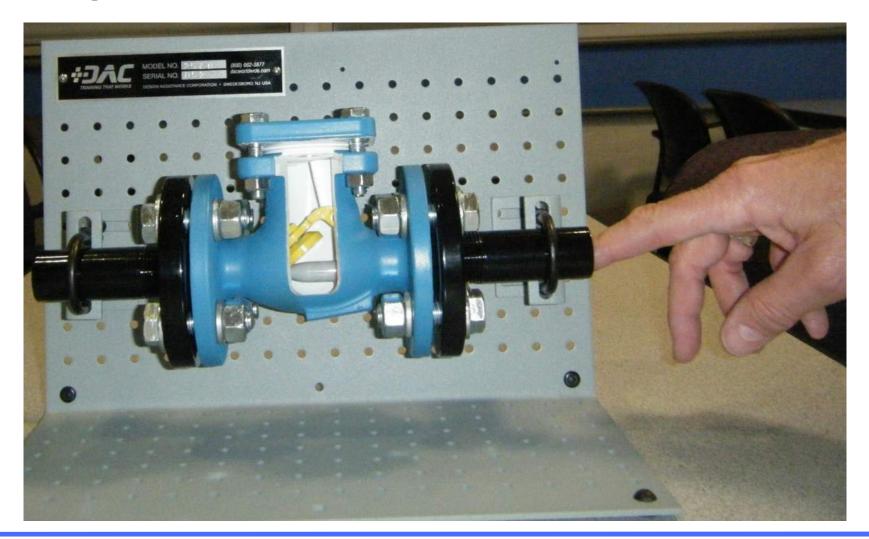
Globe Valve (cont'd)


Seating ring

Globe Valve (cont'd)

Common uses?


- Small diameter pipes
- Modulate flow
- Shut off flow


Check Valve

Swing check type uses disk to stop backflow

Can also a ball or wafer (similar to butterfly disk)



Swing check disk in action


Common uses?

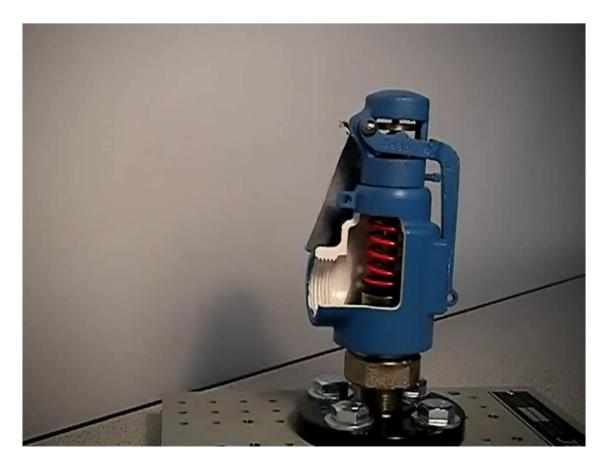
 Discharge line of parallel pumps
 Backflow preventers

Many uses

E.g., condenser
 water pump
 discharge line

... and a wide range of sizes

Pressure Reducing Valve



Disk lifts against a spring to allow flow up to a specified pressure

Typically includes a test lever


Pressure Reducing Valve

Animation of valve operation.

PRV(cont'd)

Spring over valve piston

Flow Balancing Valve

System balance is important, but there is a cost associated with using a balancing valve

Multi-purpose or "triple-duty" valves may, or may not, be a good solution

Image from www.BellGossett.com

Flow limiters prevent exceeding a given maximum flow rate.

Flow limiters prevent exceeding a given maximum flow rate.

Ported cylinders are springactuated to deliver design flow.

Ported cylinders are spring-actuated to deliver design flow.

Here's a flow limiter installed on a condenser water line serving a centrifugal chiller.

Flow Limiting Valve

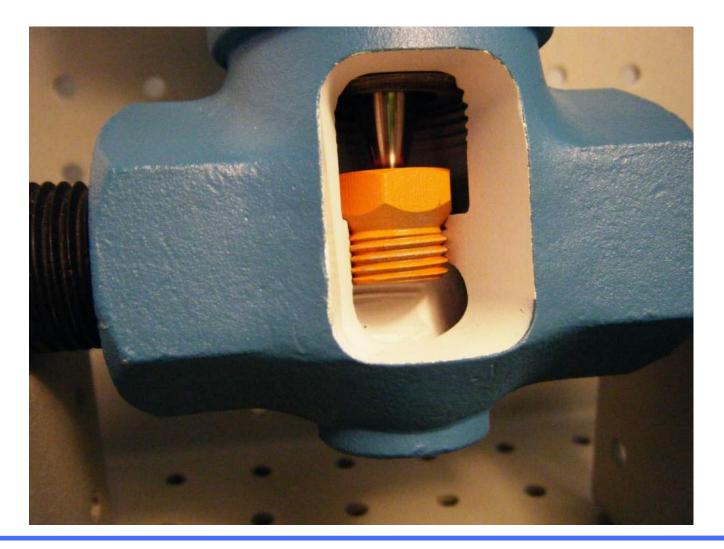
Note the design flow rate of 2,805 gpm on the manufacturer's value tag.

	ISO 9001:2000 Certified www.flowdesign.com 1-800-ASK-FLOW 1-800-275-3569
6	FLOW DESIGN INC.
01/07/2020	Designed in the U.S.A. FLOW DESIGN INC. 1-800-ASK-FLOW MODEL: WS-1200 GPM: 2805 Tag:
020 17:09	The Main Market

Flow Control Valve

Any valve used to modulate flow

Actuator can be pneumatic as shown in this picture


, electric, or electronic

Pneumatic actuator disk and spring

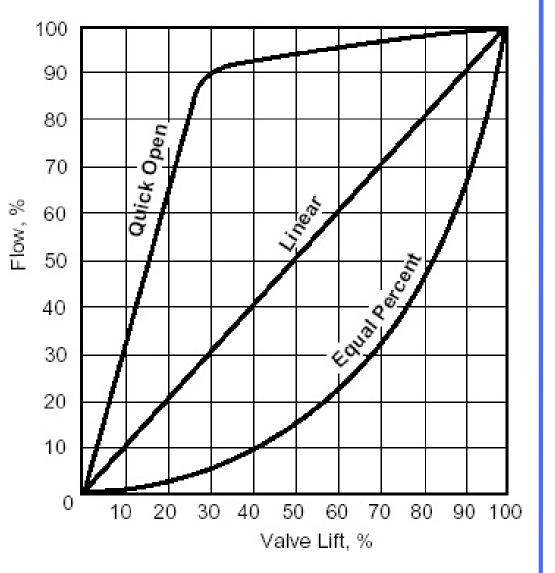
Valve seat

Selection of the proper control value is critical to maintaining efficient system operation

E.g., what's the Cv?

Cv Defined:

The volume of water flowing (gpm) at 60 °F that will result in a pressure drop of 1 psi across the valve.


$$C_v = Q \sqrt{rac{SG}{\Delta P}}$$

Note: SG = specific gravity

Control valves have characterized ports that produce different flow responses to valve position:

- Quick opening
- Linear
- Equal percentage

Equal percentage values may be selected to deliver linear flow control to an air coil in conjunction with the actuator operation.

3-Way Valve

Applications:

- Mixing
- Diverting

Key Valve Components

- Body
- Bonnet
- Seat
- Disk
- D Stem
- Packing

Bonnet Types

Various connection options

- D Threaded
- Union connection; connects unthreaded bonnet to valve body
- Bolted connection
 - Utilizes a gasket to maintain seal
- Pressure seal connection
 - High pressure applications
- Welded connection
 - Bonnet welded to valve body
 - Disposable valves

Valve Trim

Trim Components

- Disk
- 🛛 Seat
- Stem (most, but not all, valves)

• Function

- Allow for flow control
- Disk-to-seat interface determines flow performance
- Disk must withstand full system pressure if closed and outlet is opened to atmosphere
- Disk shape varies

Valve Trim

Stem designs

- ISRS
 - Inside screw rising stem
 - Stem threads in contact with fluid moving through value
- - Non-rising stem
 - Stem threads turn into disk
 - Stem threads in contact with fluid moving through value
- □ OS&Y
 - $\hfill\square$ Outside stem and yoke
 - Stem threads are outside of valve
 - Stem threads exposed to outside environment

Valve Materials

- Aluminum
- Brass
- Bronze
- Cast Iron
- Cast Steel

- ; -325 to 400 °F; <300 psig
- ; -400 to 450 °F; <800 psig
- ; -400 to 550 °F; <300 psig
- ; -20 to 410 °F; <200 psig
- ; -20 to 1,000 °F; <6,000 psig
- Ductile Iron ; -20 to 650 °F;
 <8,000 psig
- Forged Steel ; -20 to 850 °F;<5,000 psig</p>

Valve Selection - Size

Size defined by pipe connection sizes

- Availability based on <u>type</u>, <u>body material</u>, and <u>pressure class</u>
- Body material and available sizes
 - □ Bronze ; 1/8" to 3"
 - □ Cast Iron ; 2" to 30"
 - Forged Steel ; $\frac{1}{4}$ " to 3" (some types up to 24")
 - □ Cast Steel ; 2" to 30"

Valve Pressure Classes

- Greater ability to withstand pressure = higher pressure class number
 - Class number often equated to psi
 - Misleading as actual ability may vary
- Typical pressure classes assigned by material
 - 125 ; bronze, cast iron
 - 150 ; bronze, cast iron, steel
 - □ 200 ; bronze
 - □ 250 ; cast iron
 - 300 ; bronze, steel
 - □ 400 up to 4,500 ; steel

Valve Working Pressure (cont'd)

- Working Pressure = actual pressure limit of the valve at a prescribed operating temperature
- Typical working pressure assigned by material at defined temperature
- Example for Class 150 carbon steel valve

If T = 200 °F; then (P)w = 260 psig

 \Box If T = 1,000 °F; then (P)w = 20 psig !

Valve Nameplate Data

- Pressure class markings
- Intended use
- May have multiple classifications; e.g.:
 - Maximum operating steam pressure class, "S"
 - ... or "SP" for steam pressure
 - or "SWP" for steam working pressure
 - AND an ambient, -20 to 100 °F, temperature rating, indicated by "WOG" (waste, oil, gas) or "CWP" (cold working pressure)

Summary - Valve Selection

- Identify Usage
- Identify Component Materials Needed
- Select Type
- Select Trim
- Optimize
 - Minimize pressure loss
 - Locate for ease of maintenance

Summary - Valve Types and Service

- Ball
- Butterfly
- 🛛 Gate
- D Plug
- Globe
- Check
- Relief
- Control

- start/stop; direction change
- start/stop; throttling
- start/stop
- start/stop; direction change
- start/stop; throttling
- prevent reverse flow
- pressure and temperature limiting
- start/stop; throttling

Resources

ASHRAE Handbooks

- Stojkov, Brent T., <u>The Valve Primer</u>. New York, NY: Industrial Press Inc., 1997
- Design Assistance Corporation, Valve Principles Training Program, Course 251–500, 1998, revised 9–14–2007
- and, of course, the internet for access to manufacturer's websites and other engineering sites