

Commissioning Heat Pump Systems: The Already All Electric Building

Please Visit This Link While We Are Waiting to Begin

https://tinyurl.com/PECHtPmpD5Refresher

Presented By: David Sellers Senior Engineer, Facility Dynamics Engineering

Disclaimer

- The information in this document is believed to accurately describe the technologies described herein and are meant to clarify and illustrate typical situations, which must be appropriately adapted to individual circumstances. These materials were prepared to be used in conjunction with a free, educational program and are not intended to provide legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas and Electric Company (PG&E) nor any of its employees and agents:
- Makes any written or oral warranty, expressed or implied, including, but not limited to, those concerning merchantability or fitness for a particular purpose;
- Assumes any legal liability or responsibility for the accuracy or completeness of any information, apparatus, product, process, method, or policy contained herein; or
- Represents that its use would not infringe any privately owned rights, including, but not limited to, patents, trademarks, or copyrights.

Copyright Materials

Some or all of this presentation may be protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the copyright holder is prohibited

1. Attendees will be able to discuss some of the issues and opportunities associated with applying heat pumps as a source of heat for buildings as we move towards electrification

2. Attendees will be able to name the common heat pump types and describe their general characteristics (ground source, air source, water source, variable flow refrigeration, etc.)

3. Attendees will be able to discuss ventilation strategies that can be applied in conjunction with heat pump systems and how they can be integrated with the heat pumps and the zones they serve

4. Attendees will be able to discuss the design and commissioning issues associated with applying heat pumps to new construction and retrofit projects

5. Attendees will be able to identify existing building commissioning issues and opportunities associated with heat pumps and heat pump systems

1. Discuss some of the issues that can exist with all electric HVAC solutions and how to address them

 Describe how a master-planning approach to operations (a type of ongoing commissioning) can be used to drive improvements for a facility as "all electric" becomes business as usual

3. Recognize that economizer processes can be used as an energy recovery strategy to meet a facility's heating needs when combined with heat pumps

4. List the different grades of recovered heat that may be available at a given facility

5. Explain how the different grades of heat can be used to meet the heating needs for a modern building and the role heat pumps play in delivering the recovered energy at a usable grade

Today's Agenda

Introduction

A Bit About Me

My Bio and Resume are With the Class Materials (or you can see what I said the first day when the recording is available)

Ħ

0₀

Review the slide sets posted on the website for previous days and/or the recordings of the previous sessions (available about 1-2 weeks from now) Functional Testing as it Relates to the Metrics of the Systems We Test – Existing Building Perspective

Regarding the Boiler

Its not a cast iron boiler, but it is tolerant of lower entering water temperatures

- Less than 105° will void the warranty
- Compare to less than 134°F on similar boilers

File Home Insert Draw Page Layout Formulas Data Review View Automate Developer F Parts Comme Sauce MS 12 A A E E F Wrap last. General Cupbeard Font Font Font Augment F General AlloSave Cupbeard Font C D E F G H AlloSave Cupbeard Font C D E F G H AlloSave Cupbeard Font C D E F G H Mol. SERIAL NUMBER: Cop 2 Amps North temps I I Number I		Loop	4 Amps and No	rth Temps.txt •	Last Modified: V	Ved at 7:37 AM	~		
A Cut Parte Composition Comic Sans MS 12 A A F = F Wrap Text Merge & Center General \$ + % ? * AutoSave Image: Sins MS Im	File	e <mark>Home</mark> Insert Draw	Page Layout	Formulas	Data	Review Vie	w Automate	Developer	H
Parte Copy B I	Ê	▲ X Cut Comic Sans I	MS ~ 12			ab, w.	an Tevt	General	
Image Painter B Image Painter S %<	Pas	te Copy ~							
Clipboard G Font G Alignment G Number AutoSave C C C C C C C Number A1 • : × f MDL SERIAL NUMBER: O2911 C E F G H 1 MDL SERIAL NUMBER: O2911 C D E F G H 2 MDL NAME: Loop 2 Amps North temps I I G H 3 START DATE: ##### I	·	≪ Format Painter	• <u>•</u> • • <u>•</u>	' <u> </u>	= = = •	·Ξ →Ξ 🔛 Μe	erge & Center 💙	\$~%)	.00
AutoSwe Image: P + P + Image: P + P + P + P + P + P + P + P + P + P		Clipboard 🕞	Font	r <u>a</u>		Alignment	يا ي	Number	
A1 •: × ✓ MDL SERIAL NUMBER: 02911 02911 0 0 0 0 2 MDL NAME: Loop 2 Amps North temps 0 0 3 START DATE: ###### 0 0 0 4 START DATE: ###### 0 0 0 5 END ATE: ###### 0 0 0 6 END TIME: 10:05:00 0 0 0 7 START DATE: ###### 0 0 0 0 8 SAMPLE INTERVAL: 1 MINUTES 0 0 0 0 8 SAMPLES TO AVERAGE: 1 1 2 3 4 0 10 STATUS: Logging St: Memory Overwrite Enabled 0	Auto	Save 💽 🛱 🎼 り・ 🤆 🖽	छ ⇒						
A B C D E F 6 H 1 MDL SERIAL NUMBER: 02911 02911 02911 02911 02911 02911 2 MDL NAME: Loop 2 Amps North temps 0 0 0 3 START DATE: ###### 0 0 0 0 0 5 END DATE: ###### 0 0 0 0 0 6 END TIME: 10:05:00 0 <td>A1</td> <td>\bullet : \times \checkmark f_x</td> <td>MDL SE</td> <td>RIAL NUM</td> <td>BER:</td> <td></td> <td></td> <td></td> <td></td>	A1	\bullet : \times \checkmark f_x	MDL SE	RIAL NUM	BER:				
1 MDL SERIAL NUMBER: [02911] 2 MDL NAME: Loop 2 Amps North temps 3 START DATE: ######		A	В	С	D	E	F	G	н
2 MDL NAME: Loop 2 Amps North temps 3 START DATE: ######	1	MDL SERIAL NUMBER:	02911						
3 START DATE: ######	2	MDL NAME:	Loop 2 Am	ps North	temps				
4 START TIME: 18:55:00 Image: state interval	3	START DATE:	#####						
5 END DATE: ######	4	START TIME:	18:55:00						
6 END TIME: 10:05:00 Image: state stat	5	END DATE:	#####						
7 SAMPLE INTERVAL: 1 MINUTES 8 SAMPLES TO AVERAGE: 1	6	END TIME:	10:05:00						
8 SAMPLES TO AVERAGE: 1 9 NUMBER OF READINGS: 911 10 STATUS: Logging St Memory Overwrite Enabled 11 CHANNEL: 1 2 3 4 12 MODULE ID TEXT: Temperatu Temperatu 333 mV RA 333 mV RMS 13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 11 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 20 3/27/2003 18:57 80.312 80.672 8.29399 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 21 3/27/2003 19:00 80.528 80.616 8.1599 23.1 22 3/27/2003 19:01 80.528 80.816 8.31599 23.1	7	SAMPLE INTERVAL:	1	MINUTES	5				
9 NUMBER OF READINGS: 911 10 STATUS: Logging St: Memory Overwrite Enabled 11 CHANNEL: 1 2 3 4 12 MODULE ID TEXT: Temperatu Temperatu 333 mV RA 333 mV RMS 13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 11 19 3/27/2003 18:55 80.096 80.744 8.25733 23.1 20 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:59 80.384 80.67 8.25733 23.1 22 3/27/2003 18:59 80.384 80.67 8.2666 23.1 23 3/27/2003 19:01 80.528 80.68 8.28666 23.1 23 3/27/2003 19:02 80.672	8	SAMPLES TO AVERAGE:	1						
10 STATUS: Logging St. Memory Overwrite Enabled 11 CHANNEL: 1 2 3 4 12 MODULE ID TEXT: Temperatu Temperatu 333 mV RA 333 mV RMS 13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 11 19 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:57 80.312 80.528 8.27933 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.68 8.24999 23.32 24 3/27/2003 19:01 80.528 80.616 8.31599 23.1 23 3/27/2003 19:02 80.672 8.25733 23.1 23.1	9	NUMBER OF READINGS:	911						
11 CHANNEL: 1 2 3 4 12 MODULE ID TEXT: Temperatu Temperatu 333 mV RA 333 mV RMS 13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 10 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:57 80.312 80.528 8.27933 23.1 20 3/27/2003 18:57 80.384 80.672 8.25733 23.1 21 3/27/2003 18:59 80.384 80.6 8.22799 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.888 8.2666 2	10	STATUS:	Logging St	Memory O	verwrite En	abled			
12 MODULE ID TEXT: Temperatu Temperatu 333 mV RA 333 mV RMS 13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 10 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27733 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.2666 23.1 25 3/27/2003 19:03 80.744 81.032 8.25733 23.1 <td>11</td> <td>CHANNEL:</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td></td> <td></td> <td></td>	11	CHANNEL:	1	2	3	4			
13 SLOPE: 1 1 0.06006 1.8018 14 OFFSET: 0 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps 1 1 1 0.06006 1.8018 17 UNITS: -F -F amps amps 1 1 1 0.06006 1.8018 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 1	12	MODULE ID TEXT:	Temperatu	Temperatu	333 mV R/	333 mV R/	۸S		
14 OFF5ET: 0 0 0 0 0 15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps amps 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 22 3/27/2003 19:00 80.528 80.68 8.24999 23.32 24 3/27/2003 19:01 80.528 80.616 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 25 3/27/2003 19:03 80.744 81.032 8.25733 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96	13	SLOPE:	1	1	0.06006	1.8018			
15 WARMUP TIME: 0 0 20 20 16 CHANNEL NAME: Supply No Return Not Tower amp MCC amps amps 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:55 80.312 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:58 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 23.1 27 3/27/2003 19:05 </td <td>14</td> <td>OFFSET:</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>	14	OFFSET:	0	0	0	0			
16 CHANNEL NAME: Supply Not Return Not Tower amp MCC amps 17 UNITS: -F -F amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:58 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81.104<	15	WARMUP TIME:	0	0	20	20			
17 UNITS: -F -F amps amps amps 18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 23.1 19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23.2 24 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24.3 25 3/27/2003 19:01 80.528 80.816 8.31599 23.1 23.1 26 3/27/2003 19:02 80.672 80.888 8.28666 23.1 24.3 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 23.1 27 3/27/2003 19:05 80.96 81.536 8.25733 <	16	CHANNEL NAME:	Supply No	Return No	Tower amp	MCC amps			
18 3/27/2003 18:55 80.096 80.744 8.25733 23.1 19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:59 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 29<	17	UNITS:	-F	~F	amps	amps			
19 3/27/2003 18:56 80.24 80.672 8.29399 23.1 20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:58 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 26 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81.104 81.68 16.4487 31.02 29 3/27/2003 19:06 81.104 81.68 16.4487 31.02 29 3/27/2003 19:06 81.104 81.68 16.4487 31.02 29<	18	3/27/2003 18:55	80.096	80.744	8.25733	23.1			
20 3/27/2003 18:57 80.312 80.528 8.27933 23.1 21 3/27/2003 18:58 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02	19	3/27/2003 18:56	80.24	80.672	8.29399	23.1			
21 3/27/2003 18:58 80.384 80.672 8.25733 23.1 22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 29 3/27/2003 19:06 81 104 81 64 16 4487 31 02	20	3/27/2003 18:57	80.312	80.528	8.27933	23.1			
22 3/27/2003 18:59 80.384 80.6 8.22799 23.1 23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 4 Loop 4 Amps and North Temps • • •	21	3/27/2003 18:58	80.384	80.672	8.25733	23.1			
23 3/27/2003 19:00 80.528 80.6 8.24999 23.32 24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02	22	3/27/2003 18:59	80.384	80.6	8.22799	23.1			
24 3/27/2003 19:01 80.528 80.816 8.31599 23.1 25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 64 16 4487 31 02 4 Loop 4 Amps and North Temps • • •	23	3/27/2003 19:00	80.528	80.6	8.24999	23.32			
25 3/27/2003 19:02 80.672 80.888 8.28666 23.1 26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 4 Loop 4 Amps and North Temps	24	3/27/2003 19:01	80.528	80.816	8.31599	23.1			
26 3/27/2003 19:03 80.744 81.032 8.25733 23.1 27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31.02 4 Loop 4 Amps and North Temps 20 3/27/2003 19:06 81 104 81 68 16 4487 31.02	25	3/27/2003 19:02	80.672	80.888	8.28666	23.1			
27 3/27/2003 19:04 80.816 81.176 8.27199 22.88 28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 Loop 4 Amps and North Temps ↔	26	3/27/2003 19:03	80.744	81.032	8.25733	23.1			
28 3/27/2003 19:05 80.96 81.536 8.25733 23.1 29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 ▲ Loop 4 Amps and North Temps ● ▶ Loop 4 Amps and North Temps ●	27	3/27/2003 19:04	80.816	81.176	8.27199	22.88			
29 3/27/2003 19:06 81 104 81 68 16 4487 31 02 ✓ Loop 4 Amps and North Temps ⊕	28	3/27/2003 19:05	80.96	81.536	8.25733	23.1			
Loop 4 Amps and North Temps (+)	-29	3/27/2003 19:06	81 104	81.68	16 4487	31.02			
		Loop 4 Amps and No		Ð					

e Home Insert Draw Page Layout Formulas Data Review View Automate Developer Help Acrobat Compic Sans MS I	TU
A Cut Comic Sans MS I I I I <td< td=""><td>Send to MindManager MindManager</td></td<>	Send to MindManager MindManager
Comic Sans MS IZ A	Send to MindManager MindManager
Analyze B I I I I I I I <t< td=""><td>TU</td></t<>	TU
Clipboard Font	MindManager TU
Norme I I I I I I I I I I I I I I I I I I I	T U
· · · · · · · · · · · · · · · · · · ·	T U
A B C D E F G H I J K L M N O P Q R S MDL SERIAL NUMBER: 02911 02911 0 <td< td=""><td>T U</td></td<>	T U
A B C D E F G H I J K L M N O P Q R S MDL SERIAL NUMBER: 02911	T U
MDL SERIAL NUMBER: 02911 02911 Image: Comparison of the compar	
MDL NAME: Loop 2 Amps North temps START DATE: #####	
START DATE: #####	
START TIME: 18:55:00	
END DATE: #####	
END TIME: 10:05:00	
SAMPLE INTERVAL: 1 MINUTES https://tinyurl.com/SetAxisValue	
SAMPLES TO AVERAGE: 1	
NUMBER OF READINGS: 911	
STATUS: Logging St Memory Overwrite Enabled	
CHANNEL: 1 2 3 4	
MODULE ID TEXT: Temperatu 333 mV RA 333 mV RAS	
SLOPE: 1 1 0.06006 1.8018	
OFFSET: 0 0 0 0	
WARMUP TIME: 0 0 20 20 https://tinvurl.com/ExcelThirdAxis	
CHANNEL NAME: Supply No Return Noi Tower amp MCC amps	
UNITS: F Grand Amps amps amps	
3/27/2003 18:55 80.096 80.744 8.25733 23.1	
3/27/2003 18:56 80.24 80.672 8.29399 23.1	
3/27/2003 18:57 80.312 80.528 8.27933 23.1	
3/27/2003 18:58 80.384 80.672 8.25733 23.1	
3/27/2003 18:59 80.384 80.6 8.22799 23.1	
3/27/2003 19:02 80.672 80.888 8.28666 23.1	
3/27/2003 19:03 80.744 81.032 8.25733 23.1	
3/27/2003 19:04 80.816 81.176 8.27199 22.88	
3/2//2003 19:05 80.96 81.536 8.25733 23.1	
3/27/2003 19:06 81 104 81 68 16 4487 31 02	

So Far, We've Heard About the Heat Pump Loop Controls

Let's see if the pump has anything to tell us

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Serial Number 110188-1-96, 1 inch pattern 4586 impeller, 20 hp, 1750 rpm, Curve number 2 -1/2KH-182

Flow, gallons per minute

Head, ft. w.c.

Does the Pump Head Seem Reasonable?

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Serial Number 110188-1-96, 1 inch pattern 4586 impeller, 20 hp, 1750 rpm, Curve number 2 -1/2KH-182 160 12 inch 140 11 inch 120 **Design Operating Point** 10 inch 100 Head, ft. w.c. 9 inch 15 bhp 80 60 10 bhp Impeller Lines 7.5 bhp Brake Horse Power Lines 40 Pump Efficiency Lines 5 bhp System Curve 20 0 Λ 100 200 300 400 500 600 Flow, gallons per minute

formation on this pump curve was reproduced from the manufacturers certified performance curves for the purposes of alyasis and illustration. To verify certified performance for this pump, refer to the manufacturers certified performance curve

What You Might Learn From the Pump

Pump Test Results

- 11 inch impeller
- Wide open head 84 86 ft.w.c.
- Flow (from pump curve) 375 -380 gpm
- Design Flow 320 gpm

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Serial Number 110188-1-96, 1 inch pattern 4586 impeller, 20 hp, 1750 rpm, Curve number 2-1/2KH-182

The information on this pump curve was reproduced from the manufacturers certified performance curves for the purposes of analysis and illustration. To verify certified performance for this pump, refer to the manufacturers certified performance

What Did You Learn?

https://tinyurl.com/HeatPumpD4 PumpTest

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Serial Number 110188-1-96, 1 inch pattern 4586 impeller, 20 hp, 1750 rpm, Curve number 2-1/2KH-182

The information on this pump curve was reproduced from the manufacturers certified performance curves for the purposes of analysis and illustration. To verify certified performance for this pump, refer to the manufacturers certified performance

Fredrick/Weinman Engineered Products 2 -1/2 KH, 2-1/2 x 3 x 12

The information on this pump curve was reproduced from the manufacturers certified performance curves for the purposes of allyes and illustration. To verify certified performance for this pump, refer to the manufacturers certified performance curve

A Pump In A Different Loop Also Has Something to Say

A Pump In A Different Loop Also Has Something to Say

It's saying ... *Help! Help! I'm oversized!* ... just in a different way

Considering Heat Pump Interactions

Heat pump performance can be impacted by the flows and temperatures in the system

Heat pump performance at different flow rates,

85°F entering water temperature

Heat pump performand at different entering water temperatures, 3 gpm flow rate

Considering Heat Pump Interactions

Heat pump performance can be impacted by the flows and temperatures in the system

Considering Heat Pump Interactions

Heat pump performance can be impacted by the flows and temperatures in the system

Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Serial Number 110188-1-96, 1 inch pattern 4586 impeller, 20 hp, 1750 rpm, Curve number 2 -1/2KH-182

Bottom Lines

Find	lings Summary Table		\$0.10	per kWh	\$0.78	per therm				
ltem	Finding	Annual Electricity Savings		Annual Gas Savings		Total Annual Savings	Implementation Costs	Simple Payback	Recommended (Yes/No)	Note Reference
		kWh	\$	Therms	\$	\$	\$	Years		
Gue	st Housing Heat Pump Loops									
1	GHL4 - Potential to vary loop flow rate	41,540	\$4,154	0	\$0	\$4,154	\$22,704	5.5	Yes	Note 2
2	GHL2 - Cycle cooling tower pump as 1st stage	0	\$0	0	\$0	\$0	\$0	0.0	N/A	Note 1
3	GHL8 - Bypassing Flow around Heat Exchange	0	\$0	0	\$0	\$0	\$0	0.0	No	
4	GHL5 - Trim Cooling Tower Pump	40,396	\$4,040	0	\$0	\$4,040	\$9,000	2.2	Yes	
5	GHL1, GHL3 - Optimize closed loop	277,192	\$27,719	48,094	\$37,513	\$65,232	\$140,199	2.1	Yes	
Tota	al for Guest Housing Heat Pump Loops	359,127	\$35,913	48,094	37,513	\$73,426	\$171,903	2.3		
Notes	1. This finding has already been implemented by the operating	, staff								
	2 The simple payback for this finding could be as low as 4 ye	ervative estimat	e.							
	3 Further investigation is needed to estimate beneifts and cost									
	4 Energy savings possible is a conservative estimate. The act	he amount listed	1							

Bottom Lines

Note that none of the savings opportunities are directly related to the heat pumps!

Find	ings Summary Table		\$0.10	per kWh	\$0.78	per therm				
ltem	Finding	Annual Electricity Savings		Annual Gas Savings		Total Annual Savings	Implementation Costs	Simple Payback	Recommended (Yes/No)	Note Reference
		kWh	\$	Therms	\$	\$	\$	Years		
Gue	st Housing Heat Pump Loops									
1	GHL4 - Potential to vary loop flow rate	41,540	\$4,154	0	\$0	\$4,154	\$22,704	5.5	Yes	Note 2
2	GHL2 - Cycle cooling tower pump as 1st stage	0	\$0	0	\$0	\$0	\$0	0.0	N/A	Note 1
3	GHL8 - Bypassing Flow around Heat Exchang	0	\$0	0	\$0	\$0	\$0	0.0	No	•
4	GHL5 - Trim Cooling Tower Pump	40,396	\$4,040	0	\$0	\$4,040	\$9,000	2.2	Yes	
5	GHL1, GHL3 - Optimize closed loop	277,192	\$27,719	48,094	\$37,513	\$65,232	\$140,199	2.1	Yes	
Tota	l for Guest Housing Heat Pump Loops	\$35,913	48,094	37,513	\$73,426	\$171,903	2.3			
Notes	1. This finding has already been implemented by the operating	staff								
	2 The simple payback for this finding could be as low as 4 ye	ervative estimat	e.							
	3 Further investigation is needed to estimate beneifts and cost									
	4 Energy savings possible is a conservative estimate. The actu	he amount listed	1							

PEC

VRF Systems (Again)

Variable Refrigerant Flow Systems

- Key components
 - Indoor unit
 - Outdoor unit
 - Branch Controller
 - Control System
 - Proprietary
 - Limited BACnet
 integration options
 - Maintenance tool is highly desirable option

VRF Systems

Variable Flow Refrigeration (VRF) Systems Sequence of Operation

Overview

The VRF systems associated with this project operate using a proprietary digital control system that manages the interactions of the indoor units serving the occupied zones with the branch

- controllers and outdoor units serving the system
- The system is served by:
- . Two OutDoor Units (ODU) that can serve as conventional condensers to reject heat to the ambient environment or near-conventional heat pumps to extract heat from the ambient environment and
- Three Branch Controllers (BC) to manage and direct the flow of refrigerant between
- . Twenty-five InDoor Units (IDUs) with contain coils that function as evaporators for a cooling cycle and condensers for a heating
- Note that the ODUs are two different sizes and that each ODU contains two compressors. The ODUs are "twinned" which generally means they are piped in parallel and will operate as a unit with the Mitsubishi controllers using one as the master unit and the other as the slave unit, staging the compressors based on the operating mode and requirements of the system to optimize performance and
- efficiency. This system configuration will allow
- 1. Refrigement to be sent to the outdoor units operating as conventional condensing units to reject heat if there is a net cooling requirement on the system, or
- 2. Refrigerant to be sent to the outdoor units operating as heat pumps to capture heat from the outdoors if there is a net heating requirement on the system, or
- 3. Refrigerant to be redirected from zone to zone for the purposes of heat recovery.
- The system diagrams/operating diagrams used in the following section can be viewed as a narrated animation by downloading the Mitsubishi City Multi Refrigerant Flow Animation Application at www.mylinkdrive.com
- Full Cooling
- This operating mode is virtually identical to a conventional direct expansion/vapor compression refrigeration process and is illustrated in Figure 1.

In this mode, refrigerant is evaporated in the coils in all zones to

Figure 1 - A VRF System Operating in

the Full Cooling Mode

cool them. The heat is then rejected in the coils at the ODU which causes the refrigerant to condense

In this operating mode the air leaving the ODU fan will be warmer than the ambient temperature. This condition is used by the control system as an indication that the ODU is in the cooling mode. **Full Heating**

This operating mode is virtually identical to a conventional direct expansion/vapor compression process applied in a heat pump and is illustrated in Figure 2, although the coils in the condenser can see a liquid vapor mix entering them whereas heat pumps often receive only liquid refrigerant and the outdoor coil.

In this mode, refrigerant is condensed in the coils in all zones to heat them. Then, the refrigerant is evaporated in the coils at the ODU, which causes it to pick up heat from the ambient environment for use in heating the indoor zones.

In this operating mode the air leaving the ODU fan will be cooler than the ambient temperature. This condition is used by the control system as an indication that the ODU is in the heating

Heat Recovery

There are three general operating states associated with the VRF system performing heat recovery.

Balanced System

This operating mode is illustrated in Figure 3.

In this operating mode, energy is transferred from the zones that require cooling to the zones that require heating with no heat being rejected or picked up at the coils in the ODU. This is the lowest energy state for the system because no ODU fan operation is require and because the refrigerant moving through the system does double duty by first passing through the coils where cooling is required and picking up energy and then moving to the coils where heating is required and giving that energy back up.

In this operating mode, the compressor operates but the ODU fan does not operate. The control system uses this as an indication that the system is in a balanced state.

Figure 2 - A VRF System Operating in

- More Zones In Heating than Cooling
- This operating mode is illustrated in Figure 4.

Full Heating Mode

This operating mode allows the VRF system to concurrently provide. heating and cooling with the energy extracted from the zones

needing cooling providing energy to the zones that need heat. But because more heat is required than is being recovered from the

zones with a cooling load, the ODU coils are configured to recover heat from the ambient environment and the ODU operates as a heat pump.

As was the case for the full heating mode, the ODU coil receives a The Mechanical Instrumentation contractor shall also furnish and mix of liquid and gaseous refrigerant, and the air leaving the ODU install all wining, raceways and accessories require for a complete fan is cooler than the ambient air. The control system uses the wiring system and shall make final terminations to the Mitsubishi cooler air leaving the ODU fan in combination with a mixed equipment in coordination with the Mitsubishi Installing Contractor. operating state of the VRF InDoor Unit (IDU) zones (some in Commissioning shall be performed in conjunction with the heating and some in cooling) as an indication that the system is in Commissioning Provider, the Mitsubishi installing contractor and the this operating state. Mechanical Instrumentation contractor with support from the

More Zones in Cooling than Heating

This operating mode is illustrated in Figure 5.

This operating mode is similar to the operating mode discussed in the preceding paragraph in that it allows the VRF system to concurrently provide heating and cooling with the energy extracted from the zones needing cooling providing energy to the zones that need heat. But because the heat that needs to be rejected by the zones in cooling exceeds the amount of heat required by the zones in heating, the ODU coils receive hot gas and the ODP fan operates

As was the case for the full heating mode, the ODU coil receives a mix of liquid and gaseous refrigerant, and the air leaving the ODU fan is cooler than the ambient air. The control system uses the cooler air leaving the ODU fan in combination with a mixed operating state of the VRF InDoor Unit (IDU) zones (some in heating and some in cooling) as an indication that the system is in this operating state.

Proprietary Digital Control System

The various elements in the VRF system are managed by a stand-alone proprietary digital control system that is capable of providing all of the functionality necessary to operate the system perform diagnostics, schedule equipment, and track energy consumption including providing web-based access to these feature from a central location. However, since the City of Seattle is a sole source Siemens site, the Mitsubishi control system will be integrated with the Siemens control system using BACnet as well dedicated physical points that are hardwired into the Siemens control system.

The two primary control elements of the Mitsubishi Control network are the Network Manager and the IDU Remote Controlle

Network Manage

Balanced State

The Mitsubishi AE-200 controller functions as the network manager for the Mitsubishi control system. It shall be furnished

Figure 3 - A VRF System Operating in a Figure 5 - A VRF System with a Net Cooling Requirement on the System

Taking a closer look at

(Continued on sheet MI.8.03-2)

energy management, and maintenance functions.

and programmed by the Mitsubishi installing contractor and will be

enclosure furnished by the Mechanical Instrumentation contractor.

mounted by the Mechanical Instrumentation contractor in an

design and construction team as required by the contract

Moster control functions for the network

The AE-200 provides the following functions for this project.

· Operation and monitoring of the VRF equipment in the facility

· BACnet functions as required to integrate with the Siemens

Web browser access to allow a user with proper credentials to

access the system via a web browser for monitoring, operation,

documents.

system

Figure 4 - A VRF System with a Net Heating Requirement on the System

.....

of Operation Part 1

MI.8.03-1

Facility Dynamics

1790 Amuancier Ball Drive, Suite Columbia, MD 21046

Downaultury

the details

VRF systems are often considered to be capable of infinite turn down

• What we take that to mean (would like it to mean) subject to no limitation or external determination

www.merriam-webster.com

- Based on vendor discussions "infinite" means
 - 15-20% of rated capacity for the indoor units
 - 19-25% of rated capacity for the outdoor units

VRF Systems

VRF Systems: The Good, The Bad and The Ugly

The Commissioning Perspective

David Sellers, PE, Senior Engineer Facility Dynamics Engineering NW Satellite Office www.FacilityDynamics.com

https://tinyurl.com/VRFMemo

VRF Systems: The Good, The Bad and The Ugly

JUNE 2 2011

Electrification and the Already All-Electric Building

Electrification and the Already All-Electric Building

560 Mission Street

- 2002
- 31 Floors
- 665,000 sq.ft.
- LEED Platinum
- All Electric in anticipation of being netzero and carbon free

Electrification and the Already All-Electric Building

I have 300 kW of electric resistance heat, and the energy it uses is a major portion of our utility bills. And yet the building is cold!

Gary Walters, Chief Engineer

Carbon vs. Time vs. Efficiency

Carbon vs. Time vs. Efficiency

We expect our energy mix to be 70% carbon free by 2040 based on current commitments and mandates, and we're working to deliver the right resources and technologies to make that happen

Energy Strategy; <u>www.portlandgeneral.com</u>

Integrated Resource Planning

Preparing for Oregon's energy future

Carbon vs. Time vs. Efficiency The Current Carbon Impact of Burning Fuel to Make Heat

CO₂ Emissions for Different Fuels

⁻ uel	lb CO2 per	lb CO ₂ per million Btu Delivered by Boilers											
	million Btu		Boiler Efficiency										
	Burned	95%	95% 90% 85% 80% 75% 70% e										
Natural Gas	117	123	130	137	146	156	167	179					
Propane	139	146	154	163	173	185	198	213					
Oil	163	172	182	192	204	218	234	251					
Coal	212	223	235	249	265	282	303	326					
Emmissions	Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php												
Heat Rate Source - "Heat Rates" tab of this spreadsheet													
* This is the average	This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab												

Carbon vs. Time vs. Efficiency The Goal

CO₂ Emissions for Different Fuels

Fuel	lb CO ₂ per		IP CC	2 per milli		lb CO2 per Million Btu						
	million Btu			Bo	iler Efficier	ісу			Delivered Renewable			
	Burned	95%	90%	85%	80%	75%	70%	65%	Resources or Nuclear Power			
Natural Gas	117	123	130	137	146	156	167	179				
Propane	139	146	154	163	173	185	198	213	0			
Oil	163	172	182	192	204	218	234	251	U			
Coal	212	223	235	249	265	282	303	326				
Emmissions	Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php											
Hea	Heat Rate Source - "Heat Rates" tab of this spreadsheet											
* This is the average	This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab											

CO₂ Emissions for Different Fuels

Fuel Ib CO2 per Ib CO2 per million Btu Delivered by Boilers									lb CO2 per Million Btu			
	million Btu			Bo	Delivered Renewable							
	Burned	95%	90%	85%	80%	75%	70%	65%	Resources or Nuclear Power			
Natural Gas	117	123	130	137	146	156	167	179				
Propane	139	146	154	163	173	185	198	213	0			
Oil	163	172	182	192	204	218	234	251	U			
Coal	212	223	235	249	265	282	303	326				
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php												
Heat Rate Source - <u>"Heat Rates" tab of this spreadsheet</u>												
* This is the average	e value for the va	rious fossil	fuel power	plants listed	d in the "He	at Rates" to	ab					

State					% of Total 8	Electric Powe	r Generation					Combustion	Non-
		Ν	Non-Renewab	le				Renewable			Nuclear	Process	combustion
			Combustio	n Processes		Non-Combustion Processes						Generated	Process
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass	Hydro	Wind	Solar	Geothermal		Percent of	Generated
				Fuel	Fuel							Total	Percent of
					Generated								Total
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	62.4%	37.6%
Source - eGR	ID 2020, Tab	le 4							-				

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per		lb CC		lb CO2 per Million Btu							
	million Btu				Delivered Renewable							
	Burned	95%	90%	85%	65%	Resources or Nuclear Power						
Natural Gas	117	123	130	137	146	156	167	179				
Propane	139	146	154	163	173	185	198	213	0			
Oil	163	172	182	192	204	218	234	251	0			
Coal	212	223	235	249	265	282	303	326				
Emmissions	Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php											
Heat Rate Source - "Heat Rates" tab of this spreadsheet												
* This is the average	e value for the va	rious fossil	fuel power	plants listed	d in the "He	at Rates" to	ab					

Heat Rates for Different Types of Power Plants

Generating Station Type	Typical Heat Rate							
	Mini	mum	Maximum					
	Btu/kWh	Efficiency	Btu/kWh	Efficiency				
Natural Gas with Cogeneration	5,000	68%	6,500	53%				
Natural Gas Combined Cycle	6,200	55%	8,000	43%				
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%				
Natural Gas Combustion Turbine	8,000	43%	10,000	34%				
Coal Steam Turbine	9,000	38%	11,000	31%				
Natural Gas Steam Turbine	10,000	34%	12,000	28%				
Nuclear Power Plant	10,446	33%	10,459	33%				
Heat Rate Source -	https://energyk	nowledgebase.co	m/topics/heat-ro	ate.asp				
Emmissions Factor Source -	https://www.eia.gov/environment/emissions/co2_vol_mass.php							

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per		lb CC	02 per milli	on Btu Deliv	vered by B	oilers		lb CO2 per Million Btu	lb CO2 per Million Btu		
	million Btu			Bo	iler Efficier	псу			Delivered Renewable	Delivered as Electric		
	Burned	95%	90%	85%	80%	75%	70%	65%	Resources or Nuclear Power	Resistance Heat *		
Natural Gas	117	123	130	137	146	156	167	179				
Propane	139	146	154	163	173	185	198	213	0	214		
Oil	163	172	182	192	204	218	234	251	U	214		
Coal	212	223	235	249	265	282	303	326				
Emmissions	Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php											
Hea	Heat Rate Source - <u>"Heat Rates" tab of this spreadsheet</u>											
* This is the average	This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab											

Heat Rates for Different Types of Power Plants

Generating Station Type	Typical Heat Rate							
	Mini	mum	Maximum					
	Btu/kWh	Efficiency	Btu/kWh	Efficiency				
Natural Gas with Cogeneration	5,000	68%	6,500	53%				
Natural Gas Combined Cycle	6,200	55%	8,000	43%				
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%				
Natural Gas Combustion Turbine	8,000	43%	10,000	34%				
Coal Steam Turbine	9,000	38%	11,000	31%				
Natural Gas Steam Turbine	10,000	34%	12,000	28%				
Nuclear Power Plant	10,446	33%	10,459	33%				
Heat Rate Source -	https://energyknowledgebase.com/topics/heat-rate.asp							
Emmissions Factor Source -	https://www.eia.gov/environment/emissions/co2_vol_mass.php							

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per		lb CC	D ₂ per millio	on Btu Deliv	vered by B	oilers		lb CO2 per Million Btu	lb CO2 per Million Btu	lb CO2 per Million Btu
	million Btu			Bo	iler Efficier	ncy			Delivered Renewable	Delivered as Electric	Delivered by a Heat Pump
	Burned	95%	90%	85%	80%	75%	70%	65%	Resources or Nuclear Power	Resistance Heat *	with a COP of 3.7*
Natural Gas	117	123	130	137	146	156	167	179			
Propane	139	146	154	163	173	185	198	213	0	214	91
Oil	163	172	182	192	204	218	234	251	0		
Coal	212	223	235	249	265	282	303	326			
Emmissions Factor Source - <u>https://www.eia.gov/environment/emissions/co2_vol_mass.php</u>											
Hea	at Rate Source -	"Heat Rate	s" tab of th	<u>nis spreadsh</u>	<u>eet</u>						

This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab

Heat Rates for Different Types of Power Plants

Generating Station Type	Typical Heat Rate							
	Mini	mum	Maximum					
	Btu/kWh	Efficiency	Btu/kWh	Efficiency				
Natural Gas with Cogeneration	5,000	68%	6,500	53%				
Natural Gas Combined Cycle	6,200	55%	8,000	43%				
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%				
Natural Gas Combustion Turbine	8,000	43%	10,000	34%				
Coal Steam Turbine	9,000	38%	11,000	31%				
Natural Gas Steam Turbine	10,000	34%	12,000	28%				
Nuclear Power Plant	10,446	33%	10,459	33%				
Heat Rate Source -	https://energyk	nowledgebase.co	m/topics/heat-ro	ate.asp				
Emmissions Factor Source -	https://www.eia	.gov/environment	/emissions/co2_	vol_mass.php				

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per	Ib CO_2 per million Btu Delivered by Boilers							lb CO2 per Million Btu	lb CO2 per Million Btu	lb CO2 per Million Btu
	million Btu	Boiler Efficiency							Delivered Renewable	Delivered as Electric	Delivered by a Heat Pump
	Burned	95%	90%	85%	80%	75%	70%	65%	Resources or Nuclear Power	Resistance Heat *	with a COP of 3.7*
Natural Gas	117	123	130	137	146	156	167	179	0	214	91
Propane	139	146	154	163	173	185	198	213			
Oil	163	172	182	192	204	218	234	251			
Coal	212	223	235	249	265	282	303	326			
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php											
Hea	at Rate Source -	"Heat Rates" tab of this spreadsheet									
* This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab											

In the transition, burning fossil fuel efficiently to make heat may be better than burning it to make power to make heat

Don't loose sight of energy efficiency

• Just because it's free doesn't mean we can be careless with it

Don't loose sight of the power of commissioning

• Deliver better new buildings and improve existing buildings

Encourage creative thinking

Revisiting How Buildings Use Heat

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization
- Power Generation

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

Preheat Ventilation Air

50°F - 75°F

- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

50°F - 75°F 50°F - 75°F

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

80°F - 85°F 95°F - 110°F 120°F - 220°F

50°F - 75°F

50°F - 75°F

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

80°F - 85°F 95°F - 110°F 120°F – 220°F

50°F - 75°F

50°F - 75°F

212°F or higher212°F or higher; hotter is better300°F or higher
How Buildings Use Heat

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Humidification
 - Cooling
 - Sterilization

50°F - 75°F 50°F - 75°F

> 80°F - 85°F 95°F - 110°F 120°F - 220°F

212°F or higher212°F or higher; hotter is better300°F or higher

A Free Electronic Psych Chart https://tinyurl.com/FreePsychChart

File Not Saved

File Not Saved

Quantifying the Hours with Different Requirements

Quantifying the Hours with Different Requirements

Exploring Coil Performance

Recall That a Reheat Coil Selected for Space Heating Can Do Reheat With Much Cooler Water (i.e. Lower Grade Heat)

https://tinyurl.com/GreenheckCoilSelection

Coil Selection - C-3

Review Selection

Review the details of this selection. If everything is in order, press "Finish" to complete. Otherwise, press "Back" to revise your selection.

Performance Construction Note	s Comment Pricing		
Application	Hot water	Fluid	
Model	HW58S01B09-18x38-RH	Entering fluid temp. (*F)	
Air flow (SCFM)		Leaving fluid temp. (°F)	
Altitude (ft)	0	Fluid delta temp. (°F)	
Capacity (MBH)		Fluid flow rate (GPM)	5.5
Entering air temp. (°F)		Fluid velocity (ft/s)	2.98
Leaving air temp. (*F)		Fluid pressure drop (ft of water)	
Face velocity (ft/min)		Fluid fouling factor (h·ft ^{e.} *F/Btu)	
Air pressure drop (in of water)		Fluid freezing temp. (*F)	
Air fouling factor (h ft ^{e,} *F/Btu)	0.00000		

<u>G</u>o to

Finish

The Power of Ongoing Cx (With Heat Pumps)

The Power of Ongoing Cx

Another Question

https://tinyurl.com/HeatPumpD4CentralPlant

Central Plant Applications

Opening the door to recovering energy we have been tossing away all of these years

A Few Central Plant Bottom Lines

Chilled water is required for surgery when the outdoor temperature reaches 45 - 50°F

 Served by the North Wing Air Cooled Chiller

Chilled water is required by the remainder of the facility when outdoor temperatures exceed $52 - 58^{\circ}F$

- Humidity dependent
- Transition to the Nursing Wing Central Plant

Heat is required year round

- 80 90°F works above 65-70°F
- 160 180°F required during extreme weather
- 120 140°F works during mild weather

1. Start with the North Wing AHU Chilled Water Coil

- 1. Start with the North Wing AHU Chilled Water Coil
- 2. Pretend you are a Btu that was picked up from the airstream and are now in the chilled water

- 1. Start with the North Wing AHU Chilled Water Coil
- 2. Pretend you are a Btu that was picked up from the airstream and are now in the chilled water
- 3. See if you can get yourself into the heating water system and on your way to a reheat coil

Another Question

https://tinyurl.com/HeatPUmpD4Recovery

Getting Back to 560 Mission Street

Why Is This?

I have 300 kW of electric resistance heat, and the energy it uses is a major portion of our utility bills. And yet the building is cold!

Gary Walters, Chief Engineer

Fan Powered Terminal Units

AHU-2-1 / AHU-8-1 through AHU-31-1 Motor 20 HP NOM EFF 93 RPM at 60 HZ 1760 Fan CFM ~ 18,000 Coil Rows 8 GPM 67 MBH SENS. ~ 580

AHU 3-1 through AHU-7-1 Motor 25 HP NOM EFF 92.4 RPM at 60 HZ 1760 Fan CFM ~ 21,600 Coil Rows 8 GPM 84 MBH SENS. ~ 680

Recovering Heat to Reheat Series Fan Powered Box

Recovering Heat to Reheat Series Fan Powered Box

Fan runs continuously when the zone is occupied

• Tends to be constant volume

Reduction in primary flow (cooling air) is compensated for by increased return flow

- First stage of reheat
- Coil provides second stage

Recovering Heat to Reheat Series Fan Powered Box

Recovering Heat to Reheat Parallel Fan Powered Box

Fan runs intermittently when the zone is occupied

Tends to be constant volume
<u>when the fan runs</u>

Zone sees some reduction in flow until the fan starts

- First stage of reheat
- Coil provides second stage

Electric Reheat Coils

- Staged control can cause comfort issues
- Silicon Controlled Rectifiers (SCRs) allow modulation

Interaction with other system components needs to be considered

- Fire dampers in line of sight can be a problem
- Temperature sensors in line of sight can be a problem

Safeties can Cause Issues

• Air flow interlock switch may set the minimum flow rate instead of ventilation requirements

Safeties can Cause Issues

- Air flow interlock switch may set the minimum flow rate instead of ventilation requirements
- Residual heat can trip high limit safeties after shut down

Sustainability Implications

- 100% efficient at the coil!
- Run on electricity

Sustainability Implications

- 100% efficient at the coil!
- Run on electricity
- 30-40% efficient from a source energy standpoint with a fossil fuel fired power plant
- Even with a renewable grid, there will be distribution system losses

A Paradox

What happens with this terminal unit control strategy if the minimum flow rate delivers more cooling than the space requires under most of the load conditions it might see?

Air Distribution Considerations

Diffusers and Flow Variation

- Need to be designed for the full range of supply flow
- Performance with hot air different from performance with cold air
- Lower average velocity at lower flow rates
 - Less throw
 - Less mixing
 - "Dumping"

What Does All of This Mean?

All Electric <u>does not</u> mean All Done in terms of opportunities to improve efficiency and performance and reduce atmospheric impact

With a "clean sheet of paper" there may have been some better options

- Electrically fired hot water heat
 - Direct heat recovery from condenser water
 - Heat recovery chillers if higher grade heat is needed
 - Condensing boiler initially for peaking
 - Upgrade to electric boiler in the future

For an existing facility, a commitment to ongoing commissioning along with creative thinking and long-term planning can make a difference

 Electrically fired hot water heat may be an upgrade path in a facility with a long life cycle

For an existing facility, a commitment to ongoing commissioning along with creative thinking and long-term planning can make a difference

- Electrically fired hot water heat may be an upgrade path in a facility with a long life cycle
- Creative thinking can start moving you in the right direction meanwhile

A Chiller Based Free Cooling Cycle

Gary's Chillers can Do This

... and he is using that feature to help solve his heating problem

The "Trick"

Understanding what "Cooling" and "Heating" Mean in the context of the loads in the facility

Data Center

"Cooling" means keeping the data center at 80°F

- Can be achieved using 69°F -72°F "chilled" water
- Resulting return temperatures are in the 74°F – 78°F range

Office Spaces

"Heating" means warming up spaces that are around 62-65°F

- Can be achieved using 69°F 72°F "hot water"
- Resulting leaving air temperatures are in the 69°F – 71°F range
The "Trick"

"PG&E" refers to Pacific Gas and Electric Company, a subsidiary of PG&E Corporation. ©2017 Pacific Gas and Electric Company. All rights reserved. These offerings are funded by California utility customers and administered by PG&E under the auspices of the California Public Utilities Commission.

Break Time We will be back at ??:?? ?m Pacific Time

"PG&E" refers to Pacific Gas and Electric Company, a subsidiary of PG&E Corporation. ©2017 Pacific Gas and Electric Company. All rights reserved. These offerings are funded by California utility customers and administered by PG&E under the auspices of the California Public Utilities Commission.