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FIG. 1. Many industrial processes can be approximated 
by a first order lag plus dead time. The figure illus­
trates two methods for graphic approximation, both 
utilizing a tangent constructed on process response. 
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FIG. 2. Comparison of the two approximation methods 
(Fits 1 and 2). As evident in the diagram, Fit 2 proves 
to be a better approximation where the process is as­
sumed to be a second order lag plus dead time. 

A Comparison of 
Tuning Techniques 

Controller 

J. A. MILLER, A. M. LOPEZ, C. L. SMITH, and P. W. MURRILL, Lousiana State University 

Here is a clear, concise comparison of techniques for tuning controllers, and a set of conclusions 
that explain why one of the procedures appears superior to the others. The authors begin with 
an investigation of two methods for approximating the process reaction curve and demonstrate 
the one that is better. Using this method they develop tuning relations by applying several tech­
niques. The resultant graphical comparisons document their choice of the best technique. 

From among the many techniques for adjusting con­
trollers based on the open-loop process response, four 
have been chosen for purposes of comparison (Ref. 
1-4 ). All four are based on the process reaction 
curve discussed below. The tuning parameters are 
proportional gain Kc, reset time T;, and rate time Td. 
They are derived from the assumption of an ideal con­
troller characterized by the algorithm: 

m(t) = Kc [e(t) + ~Je(t)dt + Tdd~~t)J (1) 
I 

where m(t) is the controller output signal, and e(t) is 
the error signal. 

Process reaction curve 
A process reaction curve is the process response to a 
unit step change in the manipulated variable (control­
ler output). Many industrial processes can be ade­
quately approximated by a relatively simple mathe­
matical model consisting of a first order lag with a 

dead time: 
K exp (6 s) 

Output = Input . o (2) 
(T + I) 

Figure 1 illustrates two approximation methods. In 
each method a tangent is drawn to the process reac­
tion curve at its point of steepest ascent. Extreme care 
must be exercised to select this point accurately. Then 
reaction rate R, (tangent slope), process gain K, and 
the time delay L, are determined. 

The two methods differ in their manner of obtain­
ing first order lag time. For Fit 1 the time constant 
T 1 = KIR" and for Fit 2 it is -r2 = to - 60 • Since L, is 
the dead time in Figure I, 60 = L" and -r2 = to - L,. 

Figure 2 presents a comparison of these two fits 
where the actual process is taken to be a second order 
lag plus dead time. Fit 2 proves to be a much better 
approximation. 

Going from open- to closed-loop comparison of fit 
methods, Figure 3 confirms the superiority of Fit 2. 
Two sets of plots are required since different con-
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FIG. 3. The superiority of Fit 2 is confirmed in a closed· 
loop comparison. Two sets of plots are required since 
different controller settings were obtained for Fits 1 
and 2 because of their different time constants. 

troller settings were obtained for Fits I and 2 because 
of their different first order time constants. 

It is concluded that Fit 2 should be used in com­
paring controller tuning techniques. 

Open-loop tuning relations 

The purpose of open-loop tuning techniques is to de­
termine values of tuning parameters (K" T;, and Td), 
given values of process parameters (K, L, and R ,). 
The procedure for developing tuning relations has 
been to establish a criterion for optimal control, then 
determine values of tuning parameters that will satisfy 
this criterion for a given combination of process 
parameters. 

The Ziegler-Nichols criterion for optimal control 
(Ref. I) was that the response of the controlled 
process to a unit step change in distrubance should 
have a 114 decay ratio, Figure 4. A similar criterion 
was developed by Cohen and Coon, Ref. 2. The dif­
ference was in the presentation of the terms L, R, 
and K. An index of self-regulation was introduced, 
defined as 1-L = R,L,! K. The resulting model was 
more complex than Ziegler and Nichols'. 

A third set of tuning relations took advantage of 
the simplicity of the 1/4 decay ratio criterion, and 
overcame its disadvantages by adding three con­
straints-hence, its designation 3C. These disadvan­
tages were the inability of 1/4 decay ratio criterion to 
determine unique values of tuning parameters for two 
and three mode controllers, and the inability to char­
acterize an entire closed-loop response (Ref. 4). 

Tuning relations designated as 3C are expressed as 
dead time 80 first order time constant -r, and gain K. 
They are related to L, R, and 1-L: 

80 = L, } 
T = ~L,j 0_R, = Kj R, 
80 /T - 1-L - R,L,j K 

(3) 

Originally presented in graphical form, 3C rela­
tions are least squares approximated very well by 
equations of the form: 
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FIG. 4. Optimum control criterion based on require· 
ment that response to a unit step change in disturbance 
should have a 1/4 decay ratio. 

Table. Equations for six sets of tuning relations 
Cohen-Coon tuning relations 

p Proportional KK, = (6 0 /T)- 1 0 + 0.333 

PI Proportional KK, = 0.9(6 0 /T)-10 + 0.082 

Reset T;/T = [3.33(6 0 /T) + 0.3(60 /T)2°]/ 
[1 + 2.2(6 0 /T)] 

PID Proportional KK, = 1.35(6 0/T)-1 0 + 0.270 

Reset T,/T = [2.5(6 0 /T) + Q.5(6 0 /T) 20
]/ 

[1 + 0.6(6 0 /T)] 

Rate Td/T = 0.37(6 0 /T)/[1 + 0.2(6 0 /T)] 

Ziegler-Nichols (ZN), 3C, IAF, ISE, and ITAE tuning relations: 

General algorithm: m(t) = K, [ 1 + 1 IT, s + Td s] e (t) 

KK, A (6,/T)-B 
Form of equations: T, C (6 0 /T) 0 

Td E (6 0 /T)F 
Computed constants for substitution in above equations: 

Technique Mode A B C 0 E F 

ZN P 1.000 1.000 
3C P 1.208 a. 936 
IAE P 0.902 0.985 
ISE P 1.411 0.917 
ITAE P 0.490 1.084 

ZN PI 0.900 1.000 3.333 1.000 
3C PI 0.928 0.946 0.928 0.583 
IAE PI 0.984 0.986 1.644 0.707 
ISE PI 1.305 0.959 2.033 0.739 
ITAE PI 0.859 0.977 1.484 0.680 

ZN PID 1.200 1.000 2.000 1.000 0.500 1.000 
3C PID 1.370 0.950 0.740 0.738 0.365 0.950 
IAE PID 1.435 0.921 1.139 0.749 0.482 1.137 
ISE PID 1.495 0.945 0.917 0.771 0.560 1.006 
ITAE PID 1.357 0.947 1.176 0.738 0.381 0.995 
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FIG. 5. Plots of decay ratio versus ratio of dead time 
to time constant indicating 1/4 ratio is poor criterion 
for optimum control. 

where Y = KKc for proportional mode 
= Td for rate mode 
= T; for reset mode 

(4) 

A, B= constants for a given controller and mode. 

A fourth set of tuning relations is based on an opti­
mum control criterion of minimizing some form of 
error integral (Ref. 3 ). An entire closed-loop re­
sponse can be expressed by a single number which is 
a direct measure of the extent to which feedback 
eliminates error in the controlled variable. 

These integral criteria may take three forms: 
"' IAE (minimum integral of absolute error) = J
0 
I e (t) I dt ( 5) 

"' ISE (minimum integral of error squared) = J
0
e(t)2dt (6) 

ITAE (minimum integral of absolute 
00 

error multiplied by time) = J
0
t I e(t) I dt (7) 

Comparison based on open-loop, 
and closed-loop responses 
The four approaches to tuning controllers actually 
yield six sets of tuning relations, since the fourth ap­
proach expands as indicated by equations 5, 6, and 7. 
Analytical comparison of the six methods for P, PI, 
and PID configurations is presented in the Table. 
Plotting these equations yielded notable variation in 
Kc from one tuning method to another. But the varia­
tions in tuning parameters were generally not suffi­
cient for positive indications of which tuning relation 
was best. For this reason the comparison was made 
on the basis of closed-loop response. 

Computer simulation was used to calculate closed-
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FIG. 6. Generalized comparison of tuning relations for 
PI and PID controllers based on the criterion of inte­
gral of absolute error (IAE). 

loop response to a unit step change in disturbance for 
a first order lag plus dead time process with a PI or 
PID controller. The simulation determined valures of 
the four criteria (decay ratio, IAE, ISE, and ITAE) 
for several values of normalized process paramter 
Oof-r. This was done for each value of 80 /-r with a pro­
portional plus reset and then a three-mode controller, 
each being tuned by all six tuning relations. The re­
sults obtained on an x-y plotter are presented in 
Figures 5 through 8. 

Figure 5 indicates that 1/4 decay ratio is not only 
a poor criterion for optimum control, but also does 
not indicate which tuning method is best. Figures 6 
through 8, on the contrary, indicate that integral cri­
teria are good criteria, and identify the best method. 
They further indicate that the best integral tuning re­
lation, providing optimum control, corresponds to its 
particular integral. For example, the IAE-PID tuning 
relation minimizes IAE, while the ISE-PID tuning re­
lation minimizes ISE. Since the Ziegler-Nichols, 
Cohen-Coon, and 3C relations do not minimize inte­
gral criteria, the question of which technique is best 
reduces to a choice among IAE, ISE, and ITAE. 

Figures 6 through 8 also indicate important points 
about the controller to be used for a particular pro­
cess. The curves show that for values of 80 /-r less 
than 0.4 a PI and PID configuration give essentially 
the same criterion value. Therefore a PID controller 
does not offer much advantage over a PI controller 
except where Oof-r is greater than 0.4. In this case, 
however, the PID controller should be tuned with an 
integral tuning relation to obtain full benefit from the 
derivative mode. For example, a PID controller tuned 
with the Ziegler-Nichols, Cohen-Coon, or 3C rela­
tions results in a higer ITAE than a PI controller 
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FIG. 7. Generalized comparison of tuning relations for 
PI and PID controllers based on the criterion of in­
tegral of squared error (ISE). 

tuned with the ITAE relations. In general the full ad­
vantage of a PID controller is only realized when it is 
ITAE tuned and 0017 is greater than 0.4. 

Two specific cases are plotted in Figures 9 and I 0 
to illustrate the effect of 00 h varying above and below 
the value of 0.4. Figure 9 shows that for Oc/-r = 0.1, 
controller type and tuning is not too important, so a 
PID controller offers no great advantage. Figure I 0 
shows that for 00 /7 = 1.0, the PID ITAE tuned con­
troller provides a much better response than either 
PI controller. Note also that the ITAE tuned PI con­
troller has a better response than the Ziegler-Nichols 
tuned PID controller. 

It is concluded that a controller tuning method 
that utilizes integral criteria is superior to other 
methods that do not utilize such criteria. It is further 
concluded that of the three variations of integral 
criteria, the best one is ITAE, or the minimum in­
tegral of error-the integration taking place after 
the error function has been subjected to the weight­
ing factor of time. 
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FIG. 8. Generalized comparison of tuning relations for 
PI and PID controllers based on the criterion of in­
tegral of absolute error multiplied by time (ITAE). 
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Curve Tuning Controller ITAE 

0.12 
1 Zi~ler-Nichols PI 0.017 
2 ITA PI 0.016 
3 Zi~ler-Nichols PID 0.006 
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FIG. 9. Comparison of closed-loop responses for a first 
order lag plus dead time process with ratio of dead 
time to time constant equal to 0.1 (see front cover). 
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A Comparison of 
PID Control Algorithms 
JOHN P. GERRY, Gerry Engineering Software, Hubertus, Wis. 

There are no industry-wide standards for PID 

controller algorithms, and definitions vary 
widely. A new process simulation program 
provides a look at these differences. 

One fine day, a plant engineer 
replaced his old controllers 
with a different manufactur­

er's equipment. Even though he used 
the same settings on the new control­
lers, the retrofitted loops went out of 
control in automatic. He tried to tune 
these controllers the same way he 
had tuned the old ones. The loops 
seemed to get more unstable. 

This mysterious and very real situa­
tion is the result of the two manufac­
turers using different PID algorithms. 
Read on to solve this and other com­
mon mysteries about PID controllers. 

The nomenclature game 
Just as there are no adhered-to indus­
try standards for PID controllers, no­
menclature and action for controller 
modes varies. 

The following equations show the 
relationships: 
P (proportional band) = 100 I gain 
I (integral) = 1 I reset (units of time) 
D (derivative) = rate = pre-act 
(units of time) 

Manufacturers interchange both 
names and units, sometimes indepen­
dently, for integral or reset action. In 
this article, integral action is defined 
as time I repeat and reset as repeats­
/ time. One is the reciprocal of the oth­
er. Be careful, the action of either re­
set or integral can actually be 
reversed, depending on the manufac­
turer's own terminology. 

Most manufacturer's PID algorithms 
fit under one of three major classifica­
tions: interacting, noninteracting, and 
parallel. Here again, manufacturers 
differ on their names for these catego-

ries, so the only way to really tell 
which one you have is to look at the 
equation for the controller. In ideal 
form these are: 
• Ideal non interacting PID controller or 

ISA algorithm: 
Controller output = 

1 I de Kc[e(t)+/ e(t)dt+Ddt] 

•Ideal parallel PID controller: 
Controller output = 

1 I de KP e( t) +...,-; e( t) dt+ DP dt 

• Interacting PID controller: 
Controller output = 

Kc[e(t) ++ Ie(t)dt] [ 1 + D :r ] 
where Kc and KP are gain; I and IP are 
integral; and D and DP are derivative 
settings of the controller. 

The interacting controller's odd­
looking form makes it act like an elec­
tronic controller. By using the inter­
acting form, a three-term controller 
can be made with only one amplifier. 
Thus, pneumatic controllers and early 
electronic controllers often used the 
interacting form to save on amplifiers, 
which were expensive at the time. 
Some manufacturers purposely use 
the interacting form in their digital al­
gorithms in order to keep tuning simi­
lar to the tuning of electronic and 
pneumatic controllers. 

Proportional action, or gain 
If you use only proportional action, 
the main difference between interact­
ing and noninteracting algorithms is 
that some manufacturers call the pro-

portional gain coefficient "gain," 
while others call it "proportional 
band." On a controller using the 
"gain" nomenclature, increasing this 
setting generally makes the loop more 
sensitive and less stable. On the other 
hand, decreasing the "proportional 
band" will have the same effect. 

Some manufacturers allow more 
flexibility with proportional action by 
letting you choose whether or not gain 
(proportional) action works on set­
point changes. For example, Hon­
eywell offers two algorithms that 
work differently on setpoint changes. 
With Honeywell's type A algorithm, 
gain acts on set point changes, and 
with their type B it does not. For load 
upsets, type A and B act the same 
way, but for setpoint changes, the dif­
ference is dramatic. 

The illustrations show screen 
copies printed out from simulations 
done on a new software program 
called Process Plus (Gerry Engineer­
ing Software). 

In the first illustration, with the Hon­
eywell type A algorithm, damping and 
overshoot are similar on both set­
points and load disturbances. Thus, 
tuning is similar for load or setpoint 
changes with type A. Because of its 
sensitive setpoint response, you may 
want to use type A for the inner loop 
or slave in a cascade. On the other 
hand, Type B, with its smooth setpoint 
response, may be better for the outer 
or master loop. 

Bailey's "error input" and "PV and 
SP" algorithms are analogous to Hon­
eywell's type A and B. Bailey's "error 
input" has sensitive setpoint re­
sponse while Bailey's "PV and SP" 
has smooth setpoint response. 

Like Honeywell's, the two Bailey al­
gorithms give identical load respons­
es. Because the load responses are 
the same for the different Bailey and 
Honeywell algorithms, they have the 
same stability. For a fast analysis of 
the stabilities, ProcessPius allows 



comparison of robustness plots of the 
competitors' algorithms. 

Differences in integral action 
Once integral and reset values are 
converted to the same units, PI con­
trollers all respond in very much the 
same way to load disturbances. The 
proportional action may be different 
as described above. Anti-reset wind­
up is often implemented differently, 
but the effect of these differences is 
usually minor compared to other dif­
ferences between the algorithms. 

Differences in derivative action 
The largest variation among control­
lers from different manufacturers is 
found in the way they handle deriva­
tive action. Virtually no two are alike. 
This is part of the reason that most 

people avoid using derivative action. 
The differences are due to different 
methods of error signal filtering (or no 
filtering at all), whether or not the de­
rivative action works on setpoint 
changes, and how derivative inter­
acts or does not interact with the inte­
gral action. 

On controllers, you get derivative 
action when you set the derivative or 
rate adjustment to anything except 
zero. In an interacting controller, inte­
gral and derivative actions interact 
with each other. This interaction can 
cause the effective controller action 
to be very different from what it would 
be in a noninteracting controller. 

To understand how the interaction 
works, consider the following equa­
tions. The effective noninteracting 
proportional band in an interacting PID 

Screen copies of plots from ProcessPius simulation compare responses of Honeywell's Type 
A and Type B digital controller algorithms on a simulated temperature control loop. Note that 
in Type A, proportional action works on the setpoint input, while in Type B it works on the 
measurement signal only The top plot shows the response of either type controller to a step 
load change on the simulated process. The middle plot is the response of the Type A 
controller, and the bottom plot of the Type B controller. to a step change in the setpoint. 

loop controller is as follows: 

PB 
PB = 1 + D/1 

Similarly, the effective integral time in 
an interacting controller is: 

I= I+ D 

and the effective derivative time in an 
interacting controller is: 

I 
D= -1--1 

T+o 

where PB, I, and Dare the proportion­
al band, integral and derivative values 
you set or enter into the interacting 
controller. The effective values are 
the equivalent settings for the nonin­
teracting controller. 

These equations show that the ef­
fective derivative time for the interact­
ing controller cannot be made greater 
than 1 I 4 the effective integral time. 
The largest effective derivative oc­
curs when D =I. When D is set larger 
than I, the effective integral time is 
adjusted more with D and the effec­
tive derivative is adjusted more with I! 
Therefore, it is usually good control 
practice to keep the values of D less 
than I for an interacting controller. 

Foxboro and Fisher use a noninter­
acting algorithm. Honeywell, Gould 
and Texas Instruments controllers use 
the interacting type. 

Other differences in derivative 
Beside the interaction differences de­
scribed above, derivative action itself 
varies among the interacting and non­
interacting groups of different 
manufacturers. 

With most controllers, derivative 
action works only on the measure­
ment signal. On some controllers, 
however, derivative action works on 
setpoint changes. Although response 
to a load disturbance will be the 
same, setpoint response on these 
controllers can get out of hand. Since 
most controllers are used for regulat­
ing disturbances, derivative action 
that works on setpoint changes is 
usually not a problem except in cas­
cade loops or other cases in which the 
setpoint is being manipulated. 

Of more significance is whether or 
not the signal is filtered before the de­
rivative action is applied. 

The unlimited derivative problem 
Some manufacturers do not filter the 
signal to limit derivative action. Thus, 
at high frequencies, the amplitude ra­
tio gets large. In the second illustra­
tion, a frequency response screen 
copy from ProcessPius shows the 



In this simulation, measurement noise is added to a controller with unlimited derivative action, 
that is, no signal filtering. ProcessPius screen copies with zoom feature turned on show Bode 
plots of controller frequency and phase responses (top), and time response of the controller 
output (bottom). Note scale and wildness of controller output behavior without filtering. 

In this simulation, the same measurement noise is added to a control loop, but this time with 
input signal filtering (limited deriva five). The same zoom tea lure on ProcessPius permits 
comparison of the effects of the filtering on the controller frequency and phase responses 
(top), and the reduction in controller output action (bottom). Note much reduced scale. 

amplitude ratio of unlimited derivative 
action increasing with frequency. 

Unlimited derivative action does 
not help good loop control, but does 
amplify measurement noise in the 
controller output. The result of unlim­
ited derivative is a "jumpy" or ner­
vous and noisy controller output. The 
second illustration is a screen copy of 
the time response of a controller to 
measurement noise. This can wear 
out valves, or drive a slave loop's set­
point crazy. Worse yet, the noise can 
drive the controller into saturation 
which causes the anti-reset circuitry 
or coding to take over. No wonder de­
rivative is seldom used! 

Filtering limits derivative noise 
On the controllers that use filtering 
with derivative, the measurement sig­
nal usually gets the filtering. The time 
constant of filtering is usually calcu­
lated by these algorithms, based on 
the derivative value dialed in. Thus, 
the amount of filtering applied to the 
signal changes with the amount of de­
rivative chosen. This has the effect of 
limiting derivative action at high 
frequencies. 

In the third illustration, another plot 
from ProcessPius shows the ampli­
tude ratio of limited derivative action. 
This figure is the time response of a 
controller to the same measurement 
noise. Compare these responses with 
those of the illustration above. Con­
trol loop performance is the same on 
both since unlimited derivative does 
not improve control loop 
performance. 

Parallel controllers 
With parallel controllers, controller 
gain is multiplied by the error signal 
only. Integral and derivative actions 
are independent of the gain of the 
controller. 

Parallel algorithms require very dif­
ferent integral and derivative tuning 
parameters than other controllers. 
The following equations show how to 
convert between parallel and nonin­
teracting controller settings: 

I = lc KP (units of time I repeat) 

D = Del KP (units of time) 

There is more of a difference be­
tween parallel versus noninteracting 
controller tuning than between inter­
acting versus noninteracting tuning. 
The intuitive feel for tuning a parallel 
controller is very different from that 
for other types. Look at the final fig­
ure. Normally it would seem that low-



51!11 another simulatiOn perm1ts companson or tne Cllfferences between rne responses "dr 
noninteractmg and parallel PI controller algorithms" The top curve represents the plotted 
response of e1ther type controller, when carefully tuned, on a simulated flow loop" The middle 
plot shows the decreased but stable performance of the noninteracting controller when gain 
IS reduced by a factor of three" The bottom plot for the same reduced gain with the parallel 
type controller tends to instability, much as if the gain were raised instead of lowered! 

ering the controller gain should make 
the loop more stable, as in fact it does 
with the noninteracting controller in 
the figure" However, the parallel con­
troller gets less stable with lower 
gain! Like all controllers, the parallel 
controller also gets less stable with 
higher gain. 

So either increasing or decreasing 
the gain on a parallel controller can 
drive the loop unstable! The control­
lers in the the last illustration are PI 
controllers. The situation is even 
more pronounced when derivative ac­
tion is used. 

With the parallel controller, it is ap­
parent that the effective integral and 
derivative values change with the gain 
setting. For example, lowering the 
controller gain also lowers the effec­
tive /, increasing controller phase, 
and decreasing the phase margin. 
Lowering the gain also increases the 
effective 0, moving the derivative's 
phase contribution to higher frequen­
cies and reducing its stabilizing effect 
on the controller's integral action. The 
overall effect is destabilizing, as is 
shown by the bottom plot in the final 
illustration at left. 

Bailey and Allen-Bradley both have 
a parallel algorithm available that 
they describe as a "noninteraqting" 
algorithm. They call their noninteract­
ing algorithm an "interacting" one. 

Choosing the best algorithm for any 
process depends on the specific pro­
cess control needs and objectives. As 
demonstrated by these simulations, 
different algorithms perform better in 
different situations. So-called "paral­
lel" controller algorithms are not nec­
essarily noninteracting, and "nonin­
teracting" controllers can in fact be 
interacting, if one goes by the dis­
agreeing definitions of the different 
controller manufacturers. 0 



PID Tuning Without the Math 
GEORGE BUCKLEY, CONTROL ENGINEERING 

This primer explains loop performance without 
appealing to calculus or higher math functions. 

Ater 40 years of practice in in­
strumentation, much of it at 
DuPont, David W. St. Clair de­

cided to distill his experience into a 
short tutorial for those who don't have 
a background in frequency response 
analysis. Titled Controller Tuning and 
Control Loop Performance, the book is 
now available for those in the busi­
ness of solving control problems. 

The primer starts with a simplifica­
tion of the Zeigler and Nichols closed­
loop tuning method, namely, with re­
set and rate out of the controller, 
increase the gain until the loop main­
tains a small sustained cycle. 

This cycle is the natural frequency, 
P", of.the loop and is central to all con­
cepts. For instance, the initial control­
ler adjustments suggested are: 
• Set the proportional gain to one-half 

of the gain that produced the natural 
frequency p n; 

• Set the reset rate to P"; 
• Set the derivative time to one-eighth 

of the natural frequency p n. 

The subsequent discussion leads to 
an important, yet simple, concept in 
control: Pn is approximately four times 
the apparent dead time. The author 
states, "Place permanently in your 
mind that Pn = 4L and you will cover a 
preponderant majority of industrial 
control loops." 

Important points on lags 
A discussion of lags, in general, first 
order lags in particular, integrators, 
and dead time-interspersed with 
some easy-to-follow curves all in the 
time domain-leads to the following: 
• In real life, mathematically exact de­

scriptions of lags are very complex, 
often beyond definition. Their effect 
in a control loop can be represented 
by a small set of relatively simple 
building block lags. While these lags 
are not exactly the same as the real 
system, they are close enough. Usu­
ally two, occasionally three, lags will 
adequately represent a real system; 

• In normal loops, lags act in series; 
the output of one is input to another; 

• The physical order of lags (transmis­
sion, component, or process lags) 
does not matter. The response to a 
step change is the same. 
Pure dead time is used to explain 

the responses to a step input, but 
most processes do not have true dead 
time. The author proposes that all the 
little lags in the loop create the effec­
tive dead time, and thus the natural 
period. But this presents a paradox: 
the largest lag in a loop has little or 
nothing to do with the natural period. 

Next is the dissection of the step 
response into simple lag building 
blocks. The author states, "You will 
not be able to get as many lag ele­
ments as there actually are. You 
should be able to satisfy yourself that 
there are lag elements which could 

Author David St. Clair develops the concept 
of lags by using a pure dead time process, as 
shown in this example taken from his book. 
The output at point #2 of a proportional-only 
controller (Kc=%) is one-half the error signal 
at point #1. Point #3 is #2 delayed by Land 
multiplied by the process gain, shown here 
as 2. Pn is equal to twice the dead time. 

combine to be the pure dead time, the 
effective dead time, the long first-or­
der lag, etc., which were observed. In­
deed, this reverse fit-trying to take a 
test result and determine if its compo­
nents are reasonable-is a very use­
ful trouble-shooting technique." 

To help in the estimate of compo­
nent and process lags, some helpful 
examples are given. Cascade control 
and loop interactions are also briefly 
discussed. A concise explanation is 
given to that least understood and 
most complicated action-derivative. 

Controller Tuning and Control Loop 
Performance ($1 0, 37 pp, 81!2 x 11; 
Straight-line Control Co., 3 Bridle­
brook Lane, Newark, DE 19711) is for 
people who need a quick refresher or 
mini-course on PID. A promotional 
brochure with pricing is also available. 
The booklet should find its way to 
many labs, offices, and control rooms 
in the process industries, just as it did 
at DuPont, which released it to the au­
thor for publication. D 



Find Out How Good That 
PID Tuning Really Is 
JOHN P. GERRY, P.E., GES, Lockport, IL 

Tuning a loop manually is often an art. Once a 
loop appears to be tuned, questions remain: 
How sensitive will the tuning be to process 
changes? Could the tuning be better? How 
good is the tuning really? 

BY using ProcessPius, a software 
package that runs on an IBM 
PC, a user can try those "what 

if" questions very quickly. One can 
use several powerful analysis tech­
niques without ever having an opera­
tor scowl. This article will discuss 
some of these available techniques, 
focusing in on the robustness plot. 
This plot is a state-of-the-art tool al­
lowing the user to analyze loop stabil­
ity in a simple way not readily avail­
able without ProcessPius software. It 
quickly reveals how sensitive a loop is 
to any combination of process gain or 
process dead time changes. 

A process model is easy to get 
A user could try and determine the 
plant dynamics from equipment sizing 
or design data. These calculations 
can be quite tedious and frequently 
result in estimated plant dynamics 
that are far from reality. 

A plant test is simpler and more ac­
curate. Loop response to one of sev­
eral possible tests is shown (Figure 
1 ) . Some general characteristics of 
the response curve are entered into 
ProcessPius which determines the 
process from this data. 

Model determines tuning 
From the plant model, ProcessPius 
calculates PI and PID tuning for: 
• Optimal response; 
• Quarter amplitude damping; and 
• ten percent overshoot. 

Are we done now? Why not just en­
ter one of these settings into our con­
troller and call it a day? Because we 
might feel a little nervous about what 
happens to our loop when the process 
gain or dead time changes slightly. We 
don't know how good the tuning is. 
Looking at simulated time response 
and robustness plots quickly answers 
these questions. 

Look at how our simulated control 
loop responded to an upset in Figures 
2, 3, and 4. Each response curve is 
with one of the three different catego­
ries of PID tuning. 

The solid line in the upper time plot 
is how the measurement (tempera­
ture, flow, pressure, etc.) responds 
to an upset. The dash line is the set­
point. The line in the lower plot is the 
controller output response. Noise 

was added to better approximate real 
process conditions. 

The integrated absolute error 
( IAE) and sum of the squared error 
(SSE) is printed in the upper right 
portion of the time plots. Some people 
like to use these numbers as perform­
ance criteria for time response. The 
smaller the number, the better the re­
sponse and tuning. In some loops, the 
integrated absolute error is propor­
tional to the amount of energy dollars 
spent to recover from a process up­
set. Hence, a smaller IAE can equal 
greater savings. 

ProcessPius has calculated tuning 
for minimum IAE. Figure 2 shows how 
the loop responds to this tuning. Fig­
ure 3 shows the loop tuned for "quar­
ter amplitude damping", a very popu­
lar response. This tuning has a 
slightly higher IAE. Finally, Figure 4 
shows a loop tuned for ten percent 
overshoot. This tuning has the least 
desirable IAE. 

Tuning for minimum integrated ab­
solute error seems the fastest from 
the look of the response and the IAE 
and SSE values. It also seems to have 
the least overshoot. Now this has set­
tled it. Just use the tuning for minimum 

Calculated tuning is specific for the 
process model and the industrial PID 
controller used in our loop. Figure 1 shows a simulated process response to a manual change in controller output. 



Figure 2 shows simulated measurement response (noise added} to a 
load disturbance and the robustness plot for the loop. The controller 
has been tuned for MIAE (minimum integra ted absolute error}. 

Figure 3 ProcessPius screen shows simulated measurement re­
sponse (noise added} to a load disturbance and the robustness plot 
for the loop. The controller is tuned for quarter amplitude damping. 

IAE, right? Well, maybe. 
Most loops are somewhat nonlinear 

where the loop gain and dead time 
change over the loop's operating 
range or with different loads. How ef­
fective are these three categories of 
tuning when the process gain or dead 
time change? 

What is robustness? 
The robustness plot is a powerful 
analysis tool. A glance at this plot will 
inform the user if there is a need to 
adjust settings for more or less safety 
factor. It quickly shows how sensitive 
(or robust) the loop is to any combi­
nation of process gain and process 
dead time changes. The two axes of 
the plot are the delay ratio and the 
gain ratio. The delay ratio is calculat­
ed by dividing process dead time by 
the process dead time that the con­
troller was tuned for. The gain ratio is 
calculated by dividing the process 
gain by the process gain that the con­
troller was tuned for. 

The plot has a region of stability 
and a region of instability separated 
by a solid line: the limit of stability 
line. To the right and above the solid 
line (higher gain and delay ratios) the 
control loop is unstable. To the left 
and below the solid line, the control 
loop is stable. At the cross, where 
both ratios are one, the process gain 
and dead time are at the process val­
ues tuned for. 

Lets see how this plot works by 
looking at an example. Look at the 
robustness plot for the loop tuned for 
minimum IAE, integrated absolute er­
ror, in Figure 2. Starting at the cross, 
look straight up to the line. Here the 
dead time ratio read off the vertical 
axis is about 1.6. This means that if 
the dead time increases by a factor of 
about 1.6, the loop being controlled 
will be unstable. 

Now start at the cross and visually 
trace right to the solid line. The gain 
ratio at this point is about 1 .4. This 
means that if the controller or process 

gain increases by a factor of 1 .4, the 
loop will become unstable. If the gain 
and dead time increase by a factor of 
about 1.25 (move diagonally from the 
cross), the loop being controlled will 
be unstable. 

What about the dash line box? 
A safety factor of two is generally 
considered "reasonable" for a well 
known loop. The vertices of the weird 
box are a factor or divisor of two on 
the gain or delay ratio. These vertices 
are connected by lines that represent 
a combination changing gain and 
dead time that give a factor of two. So 
the dash line figure is a design aid 
much like a grid on another type of 
plot. Generally the solid limit of the 
stability line should be outside the 
dash line box for the control loop to be 
"reasonably" stable. 

A user may want more or less of a 
safety margin in his loop depending 
on a "feel" for how much the loop gain 
and dead time will change. 



Figure 4 ProcessP!us screen show simulated measurement response 
(with noise added) to a load disturbance and the robustness plot for 
the loop. The controller is tuned for ten percent overshoot. 

Figure 5 (Top) shows response with a 40 percent gain increase. con­
troller tuned for MIAE. Figure 6 (Bottom) shows response with 40 
percent gain increase. Controller tuned tor ten percent overshoot 

Robustness plot examples 
The loop tuned for minimum IAE is not 
very robust. That is, a relatively small 
change in process gain or dead time 
and our loop will be unstable. The 
loop tuned for ten percent overshoot 
is the least sensitive to changing pro· 
cess conditions. 

Looking at the robustness plots, we 
can put the time plots in perspective. 
We always knew there was a trade-off 
between tight tuning and stability­
now robustness plots quantify this. 

Still in control with more gain? 
Do robustness plots really work? To 
test this using ProcessPius, we sim­
ply change the process to see the ef­
fect on our control loop. Lets try 
changing the process gain and see 
the effect. 

A 40 percent increase in process 
gain doesn't seem like much, right? 
Take a look at Figure 5. This loop had 
the minimum IAE tuning. We in· 
creased the process gain by 40 per 

cent and tried the same upset used in 
Figure 2. Compare this response to 
the response shown in Figure 6. In 
Figure 6, this loop has a ten percent 
overshoot tuning. 

With the gain increase, the loop 
tuned for minimum IAE is almost un­
stable. This agrees with what the ro­
bustness plot of Figure 2 indicates. In 
Figure 2 moving to the right of the 
cross, we intersect the limit of stabil­
ity line at about 1.4. 

The process gain increase has less 
of an effect on the loop tuned for ten 
percent overshoot. Again, the robust­
ness plot for this loop (Figure 4) indi­
cates this. In Figure 4, the limit of sta­
bility line is about a factor of 3 away 
from the cross. The loop gain, there­
fore, would have to increase by much 
more than 40 percent to result in any 
instability. As the robustness plots 
have shown us, using the ten percent 
overshoot tuning results in less sensi­
tivity to changing conditions than the 
tighter tuned loop. 

Which tuning is the best? 
There is a trade-off between tight tun­
ing and robustness. The tighter the 
loop is tuned, the less robust and 
more sensitive it becomes. Using Pro­
cessPius, a engineer or technician 
can quickly analyze the trade-off be­
tween tight tuning and the resulting 
robustness tor any industrial loop. 

The best tuning to use in a plant 
loop depends on the knowledge and 
confidence the user has about that 
plants dynamics, linearities and 
changing conditions. If the loop is 
very linear, very well understood and 
doesn't change, use the tightest time 
response tuning (minimum integrated 
absolute error). Most plant loops will 
require tuning that is even more ro­
bust than the ten percent overshoot 
tuning example. 
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