
Part 2

0.632K

0

I I L,R,

~

Point of
maximum
slope

Time

K

FIG. 1. Many industrial processes can be approximated
by a first order lag plus dead time. The figure illus­
trates two methods for graphic approximation, both
utilizing a tangent constructed on process response.

"Actual" process G(s) = e-•t(s+1X0.5s+1)
1.0

~~ -----5!
......

8. 0.8 ,... .,... Fit 2 approximation
/ .

"' / G (s) = e-191'/(1.39s + 1)
~ "'
i

0.6 /A- Fit 1 approximation
/ G (s) = e-' 9''/(2.0s + 1)

I
~ 0.4 e' --G-- open-loop 0

0.2
/ 1/s G (s) response

0
0 2.0 4.0 6.0 8.0

Time

FIG. 2. Comparison of the two approximation methods
(Fits 1 and 2). As evident in the diagram, Fit 2 proves
to be a better approximation where the process is as­
sumed to be a second order lag plus dead time.

A Comparison of
Tuning Techniques

Controller

J. A. MILLER, A. M. LOPEZ, C. L. SMITH, and P. W. MURRILL, Lousiana State University

Here is a clear, concise comparison of techniques for tuning controllers, and a set of conclusions
that explain why one of the procedures appears superior to the others. The authors begin with
an investigation of two methods for approximating the process reaction curve and demonstrate
the one that is better. Using this method they develop tuning relations by applying several tech­
niques. The resultant graphical comparisons document their choice of the best technique.

From among the many techniques for adjusting con­
trollers based on the open-loop process response, four
have been chosen for purposes of comparison (Ref.
1-4). All four are based on the process reaction
curve discussed below. The tuning parameters are
proportional gain Kc, reset time T;, and rate time Td.
They are derived from the assumption of an ideal con­
troller characterized by the algorithm:

m(t) = Kc [e(t) + ~Je(t)dt + Tdd~~t)J (1)
I

where m(t) is the controller output signal, and e(t) is
the error signal.

Process reaction curve
A process reaction curve is the process response to a
unit step change in the manipulated variable (control­
ler output). Many industrial processes can be ade­
quately approximated by a relatively simple mathe­
matical model consisting of a first order lag with a

dead time:
K exp (6 s)

Output = Input . o (2)
(T + I)

Figure 1 illustrates two approximation methods. In
each method a tangent is drawn to the process reac­
tion curve at its point of steepest ascent. Extreme care
must be exercised to select this point accurately. Then
reaction rate R, (tangent slope), process gain K, and
the time delay L, are determined.

The two methods differ in their manner of obtain­
ing first order lag time. For Fit 1 the time constant
T 1 = KIR" and for Fit 2 it is -r2 = to - 60 • Since L, is
the dead time in Figure I, 60 = L" and -r2 = to - L,.

Figure 2 presents a comparison of these two fits
where the actual process is taken to be a second order
lag plus dead time. Fit 2 proves to be a much better
approximation.

Going from open- to closed-loop comparison of fit
methods, Figure 3 confirms the superiority of Fit 2.
Two sets of plots are required since different con-

0.6

I
~ 0.4

!
1
(...) 0.2

0

0

r,
I
I
I

5.0 10.0
Time

K, = 1.051

T1 = 0.252

"Actual" process

15.0 20.0

FIG. 3. The superiority of Fit 2 is confirmed in a closed·
loop comparison. Two sets of plots are required since
different controller settings were obtained for Fits 1
and 2 because of their different time constants.

troller settings were obtained for Fits I and 2 because
of their different first order time constants.

It is concluded that Fit 2 should be used in com­
paring controller tuning techniques.

Open-loop tuning relations

The purpose of open-loop tuning techniques is to de­
termine values of tuning parameters (K" T;, and Td),
given values of process parameters (K, L, and R ,).
The procedure for developing tuning relations has
been to establish a criterion for optimal control, then
determine values of tuning parameters that will satisfy
this criterion for a given combination of process
parameters.

The Ziegler-Nichols criterion for optimal control
(Ref. I) was that the response of the controlled
process to a unit step change in distrubance should
have a 114 decay ratio, Figure 4. A similar criterion
was developed by Cohen and Coon, Ref. 2. The dif­
ference was in the presentation of the terms L, R,
and K. An index of self-regulation was introduced,
defined as 1-L = R,L,! K. The resulting model was
more complex than Ziegler and Nichols'.

A third set of tuning relations took advantage of
the simplicity of the 1/4 decay ratio criterion, and
overcame its disadvantages by adding three con­
straints-hence, its designation 3C. These disadvan­
tages were the inability of 1/4 decay ratio criterion to
determine unique values of tuning parameters for two
and three mode controllers, and the inability to char­
acterize an entire closed-loop response (Ref. 4).

Tuning relations designated as 3C are expressed as
dead time 80 first order time constant -r, and gain K.
They are related to L, R, and 1-L:

80 = L, }
T = ~L,j 0_R, = Kj R,
80 /T - 1-L - R,L,j K

(3)

Originally presented in graphical form, 3C rela­
tions are least squares approximated very well by
equations of the form:

"
0.6

K, = 1.051
5! T1 = 0.252 §.
~ 0.4

i "Actual" process

0.2

x::_ __
5.0 10.0 15.0 20.0

Time

Shaded area = e(t)

Time

FIG. 4. Optimum control criterion based on require·
ment that response to a unit step change in disturbance
should have a 1/4 decay ratio.

Table. Equations for six sets of tuning relations
Cohen-Coon tuning relations

p Proportional KK, = (6 0 /T)- 1 0 + 0.333

PI Proportional KK, = 0.9(6 0 /T)-10 + 0.082

Reset T;/T = [3.33(6 0 /T) + 0.3(60 /T)2°]/
[1 + 2.2(6 0 /T)]

PID Proportional KK, = 1.35(6 0/T)-1 0 + 0.270

Reset T,/T = [2.5(6 0 /T) + Q.5(6 0 /T) 20
]/

[1 + 0.6(6 0 /T)]

Rate Td/T = 0.37(6 0 /T)/[1 + 0.2(6 0 /T)]

Ziegler-Nichols (ZN), 3C, IAF, ISE, and ITAE tuning relations:

General algorithm: m(t) = K, [1 + 1 IT, s + Td s] e (t)

KK, A (6,/T)-B
Form of equations: T, C (6 0 /T) 0

Td E (6 0 /T)F
Computed constants for substitution in above equations:

Technique Mode A B C 0 E F

ZN P 1.000 1.000
3C P 1.208 a. 936
IAE P 0.902 0.985
ISE P 1.411 0.917
ITAE P 0.490 1.084

ZN PI 0.900 1.000 3.333 1.000
3C PI 0.928 0.946 0.928 0.583
IAE PI 0.984 0.986 1.644 0.707
ISE PI 1.305 0.959 2.033 0.739
ITAE PI 0.859 0.977 1.484 0.680

ZN PID 1.200 1.000 2.000 1.000 0.500 1.000
3C PID 1.370 0.950 0.740 0.738 0.365 0.950
IAE PID 1.435 0.921 1.139 0.749 0.482 1.137
ISE PID 1.495 0.945 0.917 0.771 0.560 1.006
ITAE PID 1.357 0.947 1.176 0.738 0.381 0.995

0.8

0.4

~ 0
0

-0.4

Ziegler-Nichols PID
..••• --~ Ziegler-Nichols PI

~-----·- Cohen-Coon PID
•• . _ _ Y4 decay ratio

~----- __ .:_: --=-::·-3C PI
\ J \ ' Cohen-Coon PI

\ . \

\ i \.
L J '-3C PID

-0.8 L-----l------l---...l----.....1

0 0.4 0.8

80 _ Dead time
r - Time constant

1.2 1.6

FIG. 5. Plots of decay ratio versus ratio of dead time
to time constant indicating 1/4 ratio is poor criterion
for optimum control.

where Y = KKc for proportional mode
= Td for rate mode
= T; for reset mode

(4)

A, B= constants for a given controller and mode.

A fourth set of tuning relations is based on an opti­
mum control criterion of minimizing some form of
error integral (Ref. 3). An entire closed-loop re­
sponse can be expressed by a single number which is
a direct measure of the extent to which feedback
eliminates error in the controlled variable.

These integral criteria may take three forms:
"' IAE (minimum integral of absolute error) = J
0
I e (t) I dt (5)

"' ISE (minimum integral of error squared) = J
0
e(t)2dt (6)

ITAE (minimum integral of absolute
00

error multiplied by time) = J
0
t I e(t) I dt (7)

Comparison based on open-loop,
and closed-loop responses
The four approaches to tuning controllers actually
yield six sets of tuning relations, since the fourth ap­
proach expands as indicated by equations 5, 6, and 7.
Analytical comparison of the six methods for P, PI,
and PID configurations is presented in the Table.
Plotting these equations yielded notable variation in
Kc from one tuning method to another. But the varia­
tions in tuning parameters were generally not suffi­
cient for positive indications of which tuning relation
was best. For this reason the comparison was made
on the basis of closed-loop response.

Computer simulation was used to calculate closed-

e
Q;

~
0
rn
.0

"' 0
-e c:n

~

3.2

2.4

1.6

0.8

-Ziegler-Nichols PI

3C PI
/:::::cohen-Coon PID

//'·-Ziegler-Nichols PID
/ ~~_.-......._ Cohen-Coon PI

// /.(.):\: IAE PI
/ -# 3C PID

v -~· -~:1" /-IAE PID

f',i_-1?/·
#~'/.·,~·· ,

n.~?(."/ &:;! ·, ;;(-':
o~z=-~---~--~--~

0 0.4 0.8

80 _ Dead time
r - Time constant

1.2 1.6

FIG. 6. Generalized comparison of tuning relations for
PI and PID controllers based on the criterion of inte­
gral of absolute error (IAE).

loop response to a unit step change in disturbance for
a first order lag plus dead time process with a PI or
PID controller. The simulation determined valures of
the four criteria (decay ratio, IAE, ISE, and ITAE)
for several values of normalized process paramter
Oof-r. This was done for each value of 80 /-r with a pro­
portional plus reset and then a three-mode controller,
each being tuned by all six tuning relations. The re­
sults obtained on an x-y plotter are presented in
Figures 5 through 8.

Figure 5 indicates that 1/4 decay ratio is not only
a poor criterion for optimum control, but also does
not indicate which tuning method is best. Figures 6
through 8, on the contrary, indicate that integral cri­
teria are good criteria, and identify the best method.
They further indicate that the best integral tuning re­
lation, providing optimum control, corresponds to its
particular integral. For example, the IAE-PID tuning
relation minimizes IAE, while the ISE-PID tuning re­
lation minimizes ISE. Since the Ziegler-Nichols,
Cohen-Coon, and 3C relations do not minimize inte­
gral criteria, the question of which technique is best
reduces to a choice among IAE, ISE, and ITAE.

Figures 6 through 8 also indicate important points
about the controller to be used for a particular pro­
cess. The curves show that for values of 80 /-r less
than 0.4 a PI and PID configuration give essentially
the same criterion value. Therefore a PID controller
does not offer much advantage over a PI controller
except where Oof-r is greater than 0.4. In this case,
however, the PID controller should be tuned with an
integral tuning relation to obtain full benefit from the
derivative mode. For example, a PID controller tuned
with the Ziegler-Nichols, Cohen-Coon, or 3C rela­
tions results in a higer ITAE than a PI controller

¥
"' :I
r::r
(/)

~
0
~

I

1.6

1.2

0.8

0.4

- Ziegler-Nichols PI

3C Pi
/-:::Cohen-Coon PI

/<.-ISEPI
~j:~- Cohen-Coon PID

/:'l;>~ Ziegler-Nichols PID
,(.:/_ ·/ 3C PID

~yJ::R·~ / '-ISE PID
sf,'.· /

r?.t·?--
0~~~~--~~------~------~----~

0 0.4 0.8 1.2 1.6

~ = Dead time
r Time constant

FIG. 7. Generalized comparison of tuning relations for
PI and PID controllers based on the criterion of in­
tegral of squared error (ISE).

tuned with the ITAE relations. In general the full ad­
vantage of a PID controller is only realized when it is
ITAE tuned and 0017 is greater than 0.4.

Two specific cases are plotted in Figures 9 and I 0
to illustrate the effect of 00 h varying above and below
the value of 0.4. Figure 9 shows that for Oc/-r = 0.1,
controller type and tuning is not too important, so a
PID controller offers no great advantage. Figure I 0
shows that for 00 /7 = 1.0, the PID ITAE tuned con­
troller provides a much better response than either
PI controller. Note also that the ITAE tuned PI con­
troller has a better response than the Ziegler-Nichols
tuned PID controller.

It is concluded that a controller tuning method
that utilizes integral criteria is superior to other
methods that do not utilize such criteria. It is further
concluded that of the three variations of integral
criteria, the best one is ITAE, or the minimum in­
tegral of error-the integration taking place after
the error function has been subjected to the weight­
ing factor of time.

REFERENCES

1. OPTIMUM SETTINGS FOR AUTOMATIC CON­
TROLLERS, J. G. Ziegler and N. B. Nichols, Transac
tion ASME, 64, pp. 759-765, (1942).

2. THEORETICAL CONSIDERATIONS OF RETARDED
CONTROL, G. H. Cohen and G. A. Coon, Taylor In­
strument Companies' Bulletin, #TDS-10A102.

3. CONTROLLER TUNING RELATIONSHIPS BASED
ON INTEGRAL PERFORMANCE CRITERIA, A. M.
Lopez, J. A. Miller, C. L. Smith, and P. W. Murrill, In­
strumentation Technology, November 1967.

4. A MORE PRECISE METHOD FOR TUNING CONTROL­
LERS, C. L. Smith and P. W. Murill, ISA Journal,
May,1966

16.0

I
"" };' i 12.0

~
e
:;; 8.0

~

l
0 4.0
~

I

- Ziegler-Nichols PI

I Cohen-Coon PID
t/3C PI

,.," / Ziegler-Nichols PID
/~/.·~-Cohen-Coon PI

/ 1 ·".r-3C PID / 'L."/
"/ ~~~ '-. ITAE PI
~· :-[>~ / -ITAE PID /. ..z.·· --

,."'~;;It····· ---0 '--....:....11110"~~ .. :...~------~ ______ __. ______ __.

0 0.4 0.8 1.2 1.6

~ = Dead time
r Time constant

FIG. 8. Generalized comparison of tuning relations for
PI and PID controllers based on the criterion of in­
tegral of absolute error multiplied by time (ITAE).

Value of
Curve Tuning Controller ITAE

0.12
1 Zi~ler-Nichols PI 0.017
2 ITA PI 0.016
3 Zi~ler-Nichols PID 0.006
4 ITA PID 0.005

0.08
Q)
(/)
c:
8.
(/)

!!!
~= Dead time

0.1 r nme constant
0. 0.04
8 :g
(/)

.2
(.)

0.00

-0.04 ~..._ ___ __ __.~. ___ ..!-. __ __j

0 0.5 1.0 1.5 2.0
Time

FIG. 9. Comparison of closed-loop responses for a first
order lag plus dead time process with ratio of dead
time to time constant equal to 0.1 (see front cover).

Q)
(/)
c:
8.
(/)

!!!
0.

8 :g
(/)

.2
(.)

0.6

0.4

0.2

0.00

Curve

1
2
3
4

Value of
Tuning Controller ITAE

Ziegler-Nichols
ITAE
Ziegler-Nichols
ITAE

PI
PI
PID
PID

80 _ Dead time _
1 0 r - Time constant ·

12.258
4.065
4.363
2.002

-0.2 ~..._ ___ __ __. ____ __ __.

0 5.0 10.0 15.0 20.0
nme

FIG. 10. Comparison of closed-loop responses for a
first order lag plus dead time process with ratio of
dead time to time constant equal to 1.0 (see cover).

A Comparison of
PID Control Algorithms
JOHN P. GERRY, Gerry Engineering Software, Hubertus, Wis.

There are no industry-wide standards for PID

controller algorithms, and definitions vary
widely. A new process simulation program
provides a look at these differences.

One fine day, a plant engineer
replaced his old controllers
with a different manufactur­

er's equipment. Even though he used
the same settings on the new control­
lers, the retrofitted loops went out of
control in automatic. He tried to tune
these controllers the same way he
had tuned the old ones. The loops
seemed to get more unstable.

This mysterious and very real situa­
tion is the result of the two manufac­
turers using different PID algorithms.
Read on to solve this and other com­
mon mysteries about PID controllers.

The nomenclature game
Just as there are no adhered-to indus­
try standards for PID controllers, no­
menclature and action for controller
modes varies.

The following equations show the
relationships:
P (proportional band) = 100 I gain
I (integral) = 1 I reset (units of time)
D (derivative) = rate = pre-act
(units of time)

Manufacturers interchange both
names and units, sometimes indepen­
dently, for integral or reset action. In
this article, integral action is defined
as time I repeat and reset as repeats­
/ time. One is the reciprocal of the oth­
er. Be careful, the action of either re­
set or integral can actually be
reversed, depending on the manufac­
turer's own terminology.

Most manufacturer's PID algorithms
fit under one of three major classifica­
tions: interacting, noninteracting, and
parallel. Here again, manufacturers
differ on their names for these catego-

ries, so the only way to really tell
which one you have is to look at the
equation for the controller. In ideal
form these are:
• Ideal non interacting PID controller or

ISA algorithm:
Controller output =

1 I de Kc[e(t)+/ e(t)dt+Ddt]

•Ideal parallel PID controller:
Controller output =

1 I de KP e(t) +...,-; e(t) dt+ DP dt

• Interacting PID controller:
Controller output =

Kc[e(t) ++ Ie(t)dt] [1 + D :r]
where Kc and KP are gain; I and IP are
integral; and D and DP are derivative
settings of the controller.

The interacting controller's odd­
looking form makes it act like an elec­
tronic controller. By using the inter­
acting form, a three-term controller
can be made with only one amplifier.
Thus, pneumatic controllers and early
electronic controllers often used the
interacting form to save on amplifiers,
which were expensive at the time.
Some manufacturers purposely use
the interacting form in their digital al­
gorithms in order to keep tuning simi­
lar to the tuning of electronic and
pneumatic controllers.

Proportional action, or gain
If you use only proportional action,
the main difference between interact­
ing and noninteracting algorithms is
that some manufacturers call the pro-

portional gain coefficient "gain,"
while others call it "proportional
band." On a controller using the
"gain" nomenclature, increasing this
setting generally makes the loop more
sensitive and less stable. On the other
hand, decreasing the "proportional
band" will have the same effect.

Some manufacturers allow more
flexibility with proportional action by
letting you choose whether or not gain
(proportional) action works on set­
point changes. For example, Hon­
eywell offers two algorithms that
work differently on setpoint changes.
With Honeywell's type A algorithm,
gain acts on set point changes, and
with their type B it does not. For load
upsets, type A and B act the same
way, but for setpoint changes, the dif­
ference is dramatic.

The illustrations show screen
copies printed out from simulations
done on a new software program
called Process Plus (Gerry Engineer­
ing Software).

In the first illustration, with the Hon­
eywell type A algorithm, damping and
overshoot are similar on both set­
points and load disturbances. Thus,
tuning is similar for load or setpoint
changes with type A. Because of its
sensitive setpoint response, you may
want to use type A for the inner loop
or slave in a cascade. On the other
hand, Type B, with its smooth setpoint
response, may be better for the outer
or master loop.

Bailey's "error input" and "PV and
SP" algorithms are analogous to Hon­
eywell's type A and B. Bailey's "error
input" has sensitive setpoint re­
sponse while Bailey's "PV and SP"
has smooth setpoint response.

Like Honeywell's, the two Bailey al­
gorithms give identical load respons­
es. Because the load responses are
the same for the different Bailey and
Honeywell algorithms, they have the
same stability. For a fast analysis of
the stabilities, ProcessPius allows

comparison of robustness plots of the
competitors' algorithms.

Differences in integral action
Once integral and reset values are
converted to the same units, PI con­
trollers all respond in very much the
same way to load disturbances. The
proportional action may be different
as described above. Anti-reset wind­
up is often implemented differently,
but the effect of these differences is
usually minor compared to other dif­
ferences between the algorithms.

Differences in derivative action
The largest variation among control­
lers from different manufacturers is
found in the way they handle deriva­
tive action. Virtually no two are alike.
This is part of the reason that most

people avoid using derivative action.
The differences are due to different
methods of error signal filtering (or no
filtering at all), whether or not the de­
rivative action works on setpoint
changes, and how derivative inter­
acts or does not interact with the inte­
gral action.

On controllers, you get derivative
action when you set the derivative or
rate adjustment to anything except
zero. In an interacting controller, inte­
gral and derivative actions interact
with each other. This interaction can
cause the effective controller action
to be very different from what it would
be in a noninteracting controller.

To understand how the interaction
works, consider the following equa­
tions. The effective noninteracting
proportional band in an interacting PID

Screen copies of plots from ProcessPius simulation compare responses of Honeywell's Type
A and Type B digital controller algorithms on a simulated temperature control loop. Note that
in Type A, proportional action works on the setpoint input, while in Type B it works on the
measurement signal only The top plot shows the response of either type controller to a step
load change on the simulated process. The middle plot is the response of the Type A
controller, and the bottom plot of the Type B controller. to a step change in the setpoint.

loop controller is as follows:

PB
PB = 1 + D/1

Similarly, the effective integral time in
an interacting controller is:

I= I+ D

and the effective derivative time in an
interacting controller is:

I
D= -1--1

T+o

where PB, I, and Dare the proportion­
al band, integral and derivative values
you set or enter into the interacting
controller. The effective values are
the equivalent settings for the nonin­
teracting controller.

These equations show that the ef­
fective derivative time for the interact­
ing controller cannot be made greater
than 1 I 4 the effective integral time.
The largest effective derivative oc­
curs when D =I. When D is set larger
than I, the effective integral time is
adjusted more with D and the effec­
tive derivative is adjusted more with I!
Therefore, it is usually good control
practice to keep the values of D less
than I for an interacting controller.

Foxboro and Fisher use a noninter­
acting algorithm. Honeywell, Gould
and Texas Instruments controllers use
the interacting type.

Other differences in derivative
Beside the interaction differences de­
scribed above, derivative action itself
varies among the interacting and non­
interacting groups of different
manufacturers.

With most controllers, derivative
action works only on the measure­
ment signal. On some controllers,
however, derivative action works on
setpoint changes. Although response
to a load disturbance will be the
same, setpoint response on these
controllers can get out of hand. Since
most controllers are used for regulat­
ing disturbances, derivative action
that works on setpoint changes is
usually not a problem except in cas­
cade loops or other cases in which the
setpoint is being manipulated.

Of more significance is whether or
not the signal is filtered before the de­
rivative action is applied.

The unlimited derivative problem
Some manufacturers do not filter the
signal to limit derivative action. Thus,
at high frequencies, the amplitude ra­
tio gets large. In the second illustra­
tion, a frequency response screen
copy from ProcessPius shows the

In this simulation, measurement noise is added to a controller with unlimited derivative action,
that is, no signal filtering. ProcessPius screen copies with zoom feature turned on show Bode
plots of controller frequency and phase responses (top), and time response of the controller
output (bottom). Note scale and wildness of controller output behavior without filtering.

In this simulation, the same measurement noise is added to a control loop, but this time with
input signal filtering (limited deriva five). The same zoom tea lure on ProcessPius permits
comparison of the effects of the filtering on the controller frequency and phase responses
(top), and the reduction in controller output action (bottom). Note much reduced scale.

amplitude ratio of unlimited derivative
action increasing with frequency.

Unlimited derivative action does
not help good loop control, but does
amplify measurement noise in the
controller output. The result of unlim­
ited derivative is a "jumpy" or ner­
vous and noisy controller output. The
second illustration is a screen copy of
the time response of a controller to
measurement noise. This can wear
out valves, or drive a slave loop's set­
point crazy. Worse yet, the noise can
drive the controller into saturation
which causes the anti-reset circuitry
or coding to take over. No wonder de­
rivative is seldom used!

Filtering limits derivative noise
On the controllers that use filtering
with derivative, the measurement sig­
nal usually gets the filtering. The time
constant of filtering is usually calcu­
lated by these algorithms, based on
the derivative value dialed in. Thus,
the amount of filtering applied to the
signal changes with the amount of de­
rivative chosen. This has the effect of
limiting derivative action at high
frequencies.

In the third illustration, another plot
from ProcessPius shows the ampli­
tude ratio of limited derivative action.
This figure is the time response of a
controller to the same measurement
noise. Compare these responses with
those of the illustration above. Con­
trol loop performance is the same on
both since unlimited derivative does
not improve control loop
performance.

Parallel controllers
With parallel controllers, controller
gain is multiplied by the error signal
only. Integral and derivative actions
are independent of the gain of the
controller.

Parallel algorithms require very dif­
ferent integral and derivative tuning
parameters than other controllers.
The following equations show how to
convert between parallel and nonin­
teracting controller settings:

I = lc KP (units of time I repeat)

D = Del KP (units of time)

There is more of a difference be­
tween parallel versus noninteracting
controller tuning than between inter­
acting versus noninteracting tuning.
The intuitive feel for tuning a parallel
controller is very different from that
for other types. Look at the final fig­
ure. Normally it would seem that low-

51!11 another simulatiOn perm1ts companson or tne Cllfferences between rne responses "dr
noninteractmg and parallel PI controller algorithms" The top curve represents the plotted
response of e1ther type controller, when carefully tuned, on a simulated flow loop" The middle
plot shows the decreased but stable performance of the noninteracting controller when gain
IS reduced by a factor of three" The bottom plot for the same reduced gain with the parallel
type controller tends to instability, much as if the gain were raised instead of lowered!

ering the controller gain should make
the loop more stable, as in fact it does
with the noninteracting controller in
the figure" However, the parallel con­
troller gets less stable with lower
gain! Like all controllers, the parallel
controller also gets less stable with
higher gain.

So either increasing or decreasing
the gain on a parallel controller can
drive the loop unstable! The control­
lers in the the last illustration are PI
controllers. The situation is even
more pronounced when derivative ac­
tion is used.

With the parallel controller, it is ap­
parent that the effective integral and
derivative values change with the gain
setting. For example, lowering the
controller gain also lowers the effec­
tive /, increasing controller phase,
and decreasing the phase margin.
Lowering the gain also increases the
effective 0, moving the derivative's
phase contribution to higher frequen­
cies and reducing its stabilizing effect
on the controller's integral action. The
overall effect is destabilizing, as is
shown by the bottom plot in the final
illustration at left.

Bailey and Allen-Bradley both have
a parallel algorithm available that
they describe as a "noninteraqting"
algorithm. They call their noninteract­
ing algorithm an "interacting" one.

Choosing the best algorithm for any
process depends on the specific pro­
cess control needs and objectives. As
demonstrated by these simulations,
different algorithms perform better in
different situations. So-called "paral­
lel" controller algorithms are not nec­
essarily noninteracting, and "nonin­
teracting" controllers can in fact be
interacting, if one goes by the dis­
agreeing definitions of the different
controller manufacturers. 0

PID Tuning Without the Math
GEORGE BUCKLEY, CONTROL ENGINEERING

This primer explains loop performance without
appealing to calculus or higher math functions.

Ater 40 years of practice in in­
strumentation, much of it at
DuPont, David W. St. Clair de­

cided to distill his experience into a
short tutorial for those who don't have
a background in frequency response
analysis. Titled Controller Tuning and
Control Loop Performance, the book is
now available for those in the busi­
ness of solving control problems.

The primer starts with a simplifica­
tion of the Zeigler and Nichols closed­
loop tuning method, namely, with re­
set and rate out of the controller,
increase the gain until the loop main­
tains a small sustained cycle.

This cycle is the natural frequency,
P", of.the loop and is central to all con­
cepts. For instance, the initial control­
ler adjustments suggested are:
• Set the proportional gain to one-half

of the gain that produced the natural
frequency p n;

• Set the reset rate to P";
• Set the derivative time to one-eighth

of the natural frequency p n.

The subsequent discussion leads to
an important, yet simple, concept in
control: Pn is approximately four times
the apparent dead time. The author
states, "Place permanently in your
mind that Pn = 4L and you will cover a
preponderant majority of industrial
control loops."

Important points on lags
A discussion of lags, in general, first
order lags in particular, integrators,
and dead time-interspersed with
some easy-to-follow curves all in the
time domain-leads to the following:
• In real life, mathematically exact de­

scriptions of lags are very complex,
often beyond definition. Their effect
in a control loop can be represented
by a small set of relatively simple
building block lags. While these lags
are not exactly the same as the real
system, they are close enough. Usu­
ally two, occasionally three, lags will
adequately represent a real system;

• In normal loops, lags act in series;
the output of one is input to another;

• The physical order of lags (transmis­
sion, component, or process lags)
does not matter. The response to a
step change is the same.
Pure dead time is used to explain

the responses to a step input, but
most processes do not have true dead
time. The author proposes that all the
little lags in the loop create the effec­
tive dead time, and thus the natural
period. But this presents a paradox:
the largest lag in a loop has little or
nothing to do with the natural period.

Next is the dissection of the step
response into simple lag building
blocks. The author states, "You will
not be able to get as many lag ele­
ments as there actually are. You
should be able to satisfy yourself that
there are lag elements which could

Author David St. Clair develops the concept
of lags by using a pure dead time process, as
shown in this example taken from his book.
The output at point #2 of a proportional-only
controller (Kc=%) is one-half the error signal
at point #1. Point #3 is #2 delayed by Land
multiplied by the process gain, shown here
as 2. Pn is equal to twice the dead time.

combine to be the pure dead time, the
effective dead time, the long first-or­
der lag, etc., which were observed. In­
deed, this reverse fit-trying to take a
test result and determine if its compo­
nents are reasonable-is a very use­
ful trouble-shooting technique."

To help in the estimate of compo­
nent and process lags, some helpful
examples are given. Cascade control
and loop interactions are also briefly
discussed. A concise explanation is
given to that least understood and
most complicated action-derivative.

Controller Tuning and Control Loop
Performance ($1 0, 37 pp, 81!2 x 11;
Straight-line Control Co., 3 Bridle­
brook Lane, Newark, DE 19711) is for
people who need a quick refresher or
mini-course on PID. A promotional
brochure with pricing is also available.
The booklet should find its way to
many labs, offices, and control rooms
in the process industries, just as it did
at DuPont, which released it to the au­
thor for publication. D

Find Out How Good That
PID Tuning Really Is
JOHN P. GERRY, P.E., GES, Lockport, IL

Tuning a loop manually is often an art. Once a
loop appears to be tuned, questions remain:
How sensitive will the tuning be to process
changes? Could the tuning be better? How
good is the tuning really?

BY using ProcessPius, a software
package that runs on an IBM
PC, a user can try those "what

if" questions very quickly. One can
use several powerful analysis tech­
niques without ever having an opera­
tor scowl. This article will discuss
some of these available techniques,
focusing in on the robustness plot.
This plot is a state-of-the-art tool al­
lowing the user to analyze loop stabil­
ity in a simple way not readily avail­
able without ProcessPius software. It
quickly reveals how sensitive a loop is
to any combination of process gain or
process dead time changes.

A process model is easy to get
A user could try and determine the
plant dynamics from equipment sizing
or design data. These calculations
can be quite tedious and frequently
result in estimated plant dynamics
that are far from reality.

A plant test is simpler and more ac­
curate. Loop response to one of sev­
eral possible tests is shown (Figure
1) . Some general characteristics of
the response curve are entered into
ProcessPius which determines the
process from this data.

Model determines tuning
From the plant model, ProcessPius
calculates PI and PID tuning for:
• Optimal response;
• Quarter amplitude damping; and
• ten percent overshoot.

Are we done now? Why not just en­
ter one of these settings into our con­
troller and call it a day? Because we
might feel a little nervous about what
happens to our loop when the process
gain or dead time changes slightly. We
don't know how good the tuning is.
Looking at simulated time response
and robustness plots quickly answers
these questions.

Look at how our simulated control
loop responded to an upset in Figures
2, 3, and 4. Each response curve is
with one of the three different catego­
ries of PID tuning.

The solid line in the upper time plot
is how the measurement (tempera­
ture, flow, pressure, etc.) responds
to an upset. The dash line is the set­
point. The line in the lower plot is the
controller output response. Noise

was added to better approximate real
process conditions.

The integrated absolute error
(IAE) and sum of the squared error
(SSE) is printed in the upper right
portion of the time plots. Some people
like to use these numbers as perform­
ance criteria for time response. The
smaller the number, the better the re­
sponse and tuning. In some loops, the
integrated absolute error is propor­
tional to the amount of energy dollars
spent to recover from a process up­
set. Hence, a smaller IAE can equal
greater savings.

ProcessPius has calculated tuning
for minimum IAE. Figure 2 shows how
the loop responds to this tuning. Fig­
ure 3 shows the loop tuned for "quar­
ter amplitude damping", a very popu­
lar response. This tuning has a
slightly higher IAE. Finally, Figure 4
shows a loop tuned for ten percent
overshoot. This tuning has the least
desirable IAE.

Tuning for minimum integrated ab­
solute error seems the fastest from
the look of the response and the IAE
and SSE values. It also seems to have
the least overshoot. Now this has set­
tled it. Just use the tuning for minimum

Calculated tuning is specific for the
process model and the industrial PID
controller used in our loop. Figure 1 shows a simulated process response to a manual change in controller output.

Figure 2 shows simulated measurement response (noise added} to a
load disturbance and the robustness plot for the loop. The controller
has been tuned for MIAE (minimum integra ted absolute error}.

Figure 3 ProcessPius screen shows simulated measurement re­
sponse (noise added} to a load disturbance and the robustness plot
for the loop. The controller is tuned for quarter amplitude damping.

IAE, right? Well, maybe.
Most loops are somewhat nonlinear

where the loop gain and dead time
change over the loop's operating
range or with different loads. How ef­
fective are these three categories of
tuning when the process gain or dead
time change?

What is robustness?
The robustness plot is a powerful
analysis tool. A glance at this plot will
inform the user if there is a need to
adjust settings for more or less safety
factor. It quickly shows how sensitive
(or robust) the loop is to any combi­
nation of process gain and process
dead time changes. The two axes of
the plot are the delay ratio and the
gain ratio. The delay ratio is calculat­
ed by dividing process dead time by
the process dead time that the con­
troller was tuned for. The gain ratio is
calculated by dividing the process
gain by the process gain that the con­
troller was tuned for.

The plot has a region of stability
and a region of instability separated
by a solid line: the limit of stability
line. To the right and above the solid
line (higher gain and delay ratios) the
control loop is unstable. To the left
and below the solid line, the control
loop is stable. At the cross, where
both ratios are one, the process gain
and dead time are at the process val­
ues tuned for.

Lets see how this plot works by
looking at an example. Look at the
robustness plot for the loop tuned for
minimum IAE, integrated absolute er­
ror, in Figure 2. Starting at the cross,
look straight up to the line. Here the
dead time ratio read off the vertical
axis is about 1.6. This means that if
the dead time increases by a factor of
about 1.6, the loop being controlled
will be unstable.

Now start at the cross and visually
trace right to the solid line. The gain
ratio at this point is about 1 .4. This
means that if the controller or process

gain increases by a factor of 1 .4, the
loop will become unstable. If the gain
and dead time increase by a factor of
about 1.25 (move diagonally from the
cross), the loop being controlled will
be unstable.

What about the dash line box?
A safety factor of two is generally
considered "reasonable" for a well
known loop. The vertices of the weird
box are a factor or divisor of two on
the gain or delay ratio. These vertices
are connected by lines that represent
a combination changing gain and
dead time that give a factor of two. So
the dash line figure is a design aid
much like a grid on another type of
plot. Generally the solid limit of the
stability line should be outside the
dash line box for the control loop to be
"reasonably" stable.

A user may want more or less of a
safety margin in his loop depending
on a "feel" for how much the loop gain
and dead time will change.

Figure 4 ProcessP!us screen show simulated measurement response
(with noise added) to a load disturbance and the robustness plot for
the loop. The controller is tuned for ten percent overshoot.

Figure 5 (Top) shows response with a 40 percent gain increase. con­
troller tuned for MIAE. Figure 6 (Bottom) shows response with 40
percent gain increase. Controller tuned tor ten percent overshoot

Robustness plot examples
The loop tuned for minimum IAE is not
very robust. That is, a relatively small
change in process gain or dead time
and our loop will be unstable. The
loop tuned for ten percent overshoot
is the least sensitive to changing pro·
cess conditions.

Looking at the robustness plots, we
can put the time plots in perspective.
We always knew there was a trade-off
between tight tuning and stability­
now robustness plots quantify this.

Still in control with more gain?
Do robustness plots really work? To
test this using ProcessPius, we sim­
ply change the process to see the ef­
fect on our control loop. Lets try
changing the process gain and see
the effect.

A 40 percent increase in process
gain doesn't seem like much, right?
Take a look at Figure 5. This loop had
the minimum IAE tuning. We in·
creased the process gain by 40 per

cent and tried the same upset used in
Figure 2. Compare this response to
the response shown in Figure 6. In
Figure 6, this loop has a ten percent
overshoot tuning.

With the gain increase, the loop
tuned for minimum IAE is almost un­
stable. This agrees with what the ro­
bustness plot of Figure 2 indicates. In
Figure 2 moving to the right of the
cross, we intersect the limit of stabil­
ity line at about 1.4.

The process gain increase has less
of an effect on the loop tuned for ten
percent overshoot. Again, the robust­
ness plot for this loop (Figure 4) indi­
cates this. In Figure 4, the limit of sta­
bility line is about a factor of 3 away
from the cross. The loop gain, there­
fore, would have to increase by much
more than 40 percent to result in any
instability. As the robustness plots
have shown us, using the ten percent
overshoot tuning results in less sensi­
tivity to changing conditions than the
tighter tuned loop.

Which tuning is the best?
There is a trade-off between tight tun­
ing and robustness. The tighter the
loop is tuned, the less robust and
more sensitive it becomes. Using Pro­
cessPius, a engineer or technician
can quickly analyze the trade-off be­
tween tight tuning and the resulting
robustness tor any industrial loop.

The best tuning to use in a plant
loop depends on the knowledge and
confidence the user has about that
plants dynamics, linearities and
changing conditions. If the loop is
very linear, very well understood and
doesn't change, use the tightest time
response tuning (minimum integrated
absolute error). Most plant loops will
require tuning that is even more ro­
bust than the ten percent overshoot
tuning example.

Acknowledgement
The author would like to acknowledge
Dr. P.D.Hansen who invented robust­
ness plots. 0

