

Retrocommissioning Workshop Series III

Parallel Pumps and Pump Power

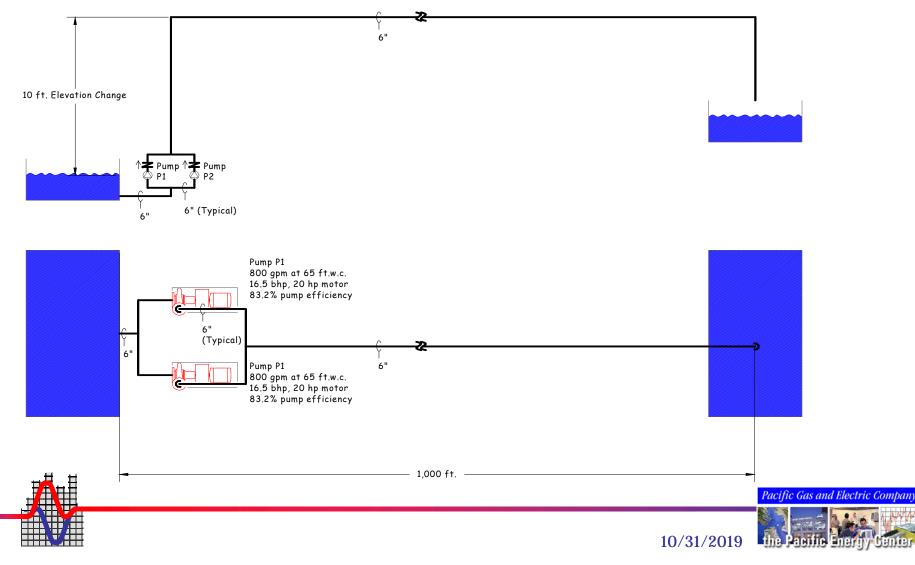
Presented By: David Sellers, Senior Engineer Facility Dynamics Engineering

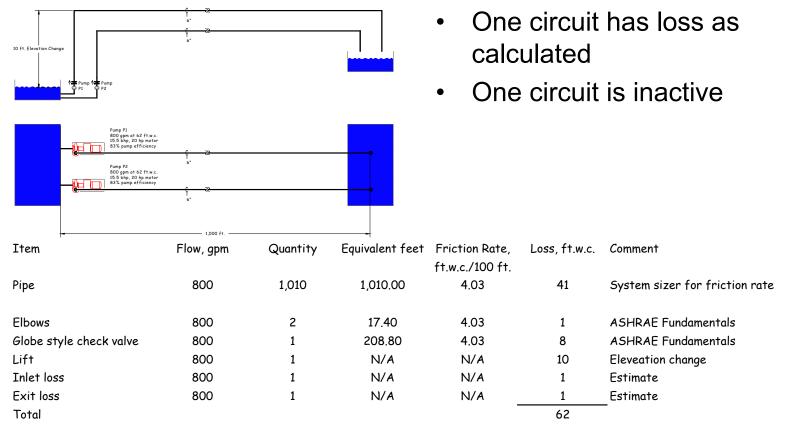
The Issue

• The pump affinity laws say that horse power varies as the cube of the flow rate.

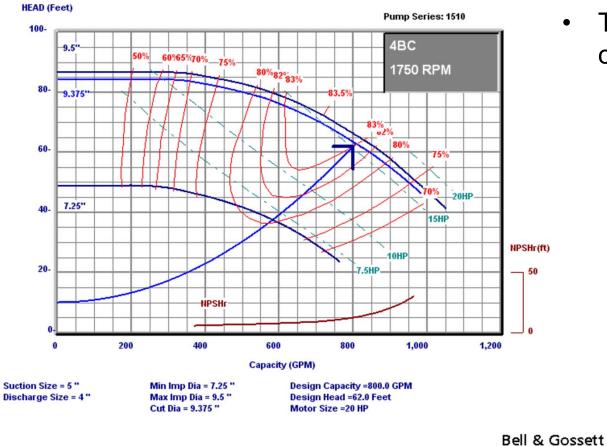

$$HP_{New} = HP_{Old} \times (Flow_{New}/Flow_{Old})^3$$

 Does this mean that if I have two pumps in parallel, each capable of moving the design flow, then if I run both of the pumps moving half of the required flow rate each, will the power required be 1/8th (1/2 x 1/2 x 1/2) of what was required when I ran one pump alone to provide the required flow rate?




System 1: Two Independent Fully Redundant Circuits

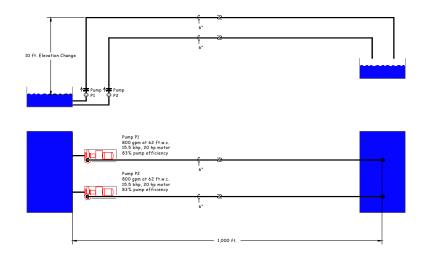
System 2: Shared Circuit, Redundant Pumps


System 1: Head Loss Calculation One Pump Provides All Flow

Option 1: Operating Mode A – One pump runs full speed

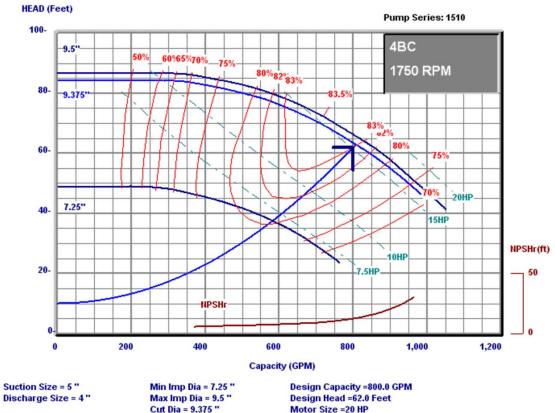
- Two redundant piping circuits
 - Significant first cost penalty
 - Most immune to failure of any component

ITT Industries



Mode	Pump Selection, Number of		Flow	Flow, gpm		Efficiency	Motor	Brake Horse Power	
	Bell and Gossett Basis	Pumps Running	Total	Per Pump	ft.w.c.		Horse Power	Per Pump	Total
One pump at full speed the other off	4BC, 1,750 rpm, 9.375" impeller	1	800	800	62	83.0%	20	15.5	15.5

System 1: Head Loss Calculation Each Pump Provides 50% of Flow



- Both circuits have losses as calculated
- Both circuits are active
- Losses follow square law
- Lift (elevation change) does not vary with flow rate

Iten	I	Flow, gpm	Quantity	Equivalent feet	Friction Rate, ft.w.c./100 ft.	Loss, ft.w.c.	Comment
Pipe		400	1,010	1,010.00	1.08	11	System sizer for friction rate
Elbo	WS	400	2	17.40	1.08	0	ASHRAE Fundamentals
Glob	e style check valve	400	1	208.80	1.08	2	ASHRAE Fundamentals Was 8 ft.w.c. at 800 gpm
Lift		400	1	N/A	N/A	10	Eleveation change
Inle	loss	400	1	N/A	N/A	0	Estimate
Exit	loss	400	1	N/A	N/A	0	Estimate
Tota	I				-	24	-

Option 1: Operating Mode B – Two pumps run at 50% speed

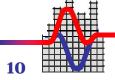
- Two redundant piping circuits
 - Significant first cost penalty
 - Most immune to failure of any component
 - Approaches the
 "cube rule" but not
 quite due to the
 constant head
 associated with lift

Bell & Gossett

🔆 ITT Industries

Pacific Gas and Electric Company the Pacific Energy Center

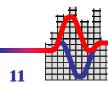
Option 1: Operating Mode B – Two pumps run at reduced speed



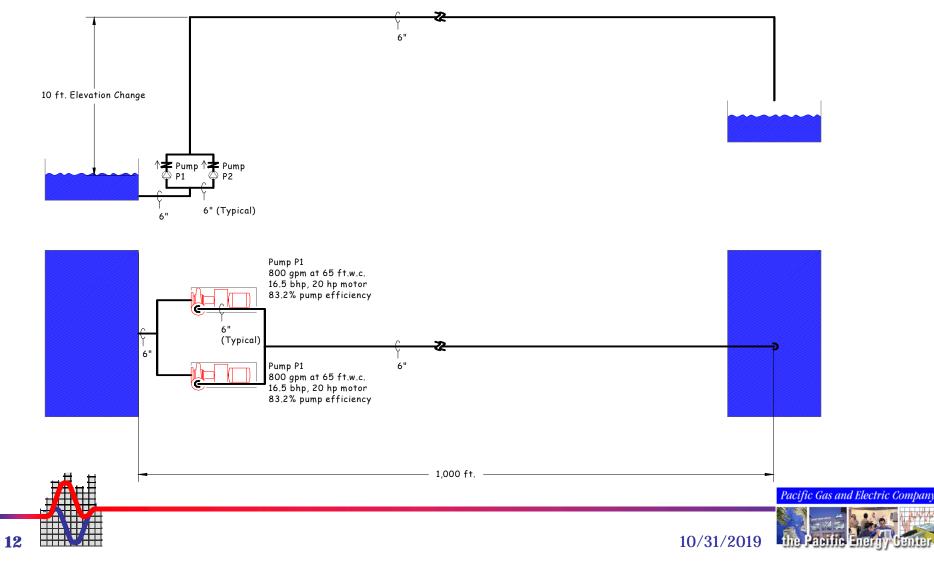
The Power and Eff. curves shown are for the cut dia. impeller.

- Two redundant piping circuits
 - Significant first cost penalty
 - Most immune to failure of any component
 - Approaches the "cube rule" but not quite due to the constant head associated with lift

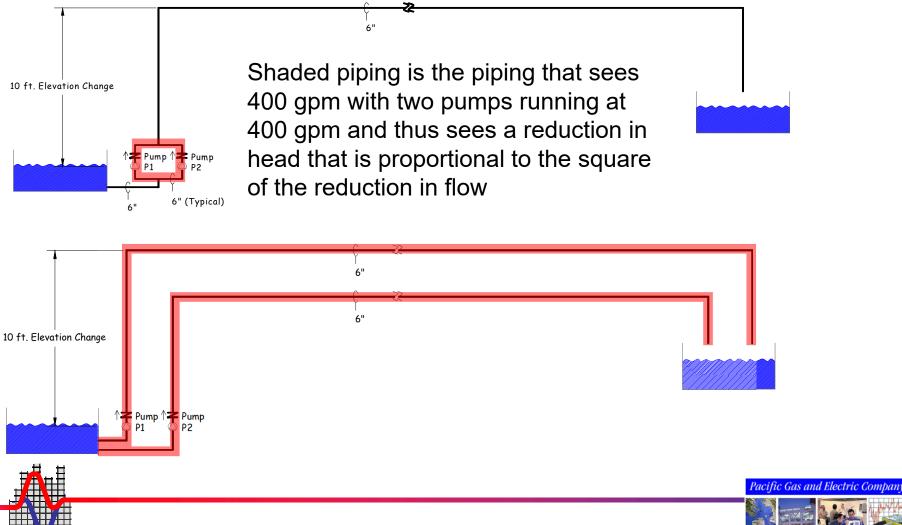
Bell & Gossett



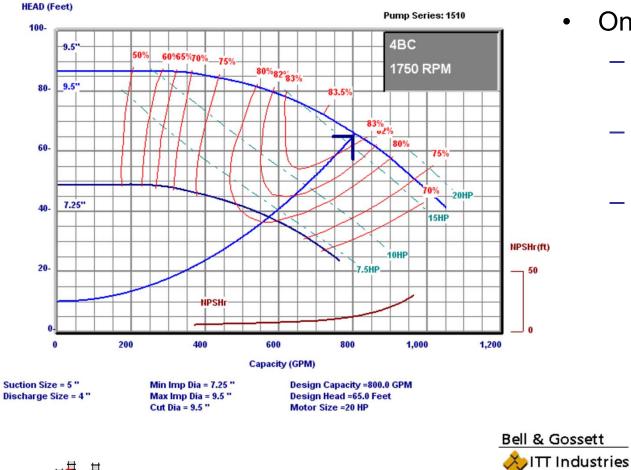
Pacific Gas and Electric Company


Mode	Pump Selection,		Flow, gpm		Head,	Efficiency	Motor Horse Power	Brake Horse Power	
Bell and Gossett Basis	Pumps Running	Total	Per Pump	ft.w.c.	Per Pump			Total	
One pump at full speed the other off	4BC, 1,750 rpm, 9.375" impeller	1	800	800	62	83.0%	20	15.5	15.5
Both pumps run at reduced speed	4BC, 1,000 rpm, 9.375" impeller	2	800	400	24	83.0%	20	2.9	5.8

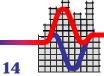
Cube rule predicts 1.9 bhp per pump or 3.8 bhp total



Option 2: Shared Circuit, Redundant Pumps

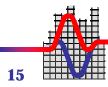


Option 2 versus Option 1 Shared Circuit versus Independent Circuit

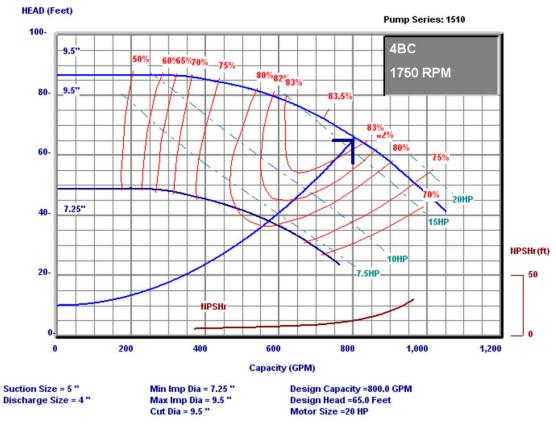


10/31/2019

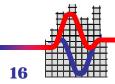
Option 2: Operating Mode A – One pump runs at full speed


- One common circuit
 - Minimizes first cost penalty
 - Immune to failure of a pump
 - Not immune to a piping failure

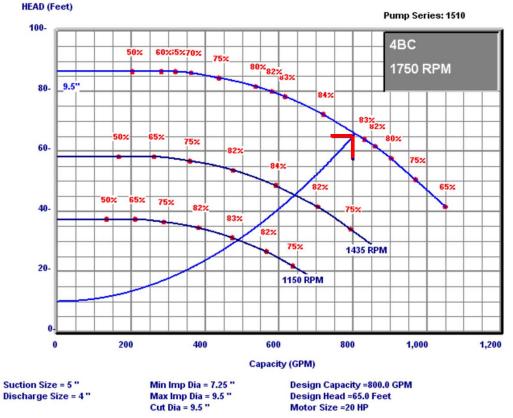
10/31/2019



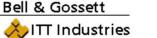
Mode	Pump Selection,		Flow	, gpm	Head,	Efficiency	Motor	Brake Hor	se Power
Bell and Gossett Basis	Pumps Running	Total	Per Pump	ft.w.c.		Horse Power	Per Pump	Total	
One pump at full speed the other off	4BC, 1,750 rpm, 9.375" impeller	1	800	800	62	83.0%	20	15.5	15.5
Both pumps run at reduced speed	4BC, 1,000 rpm, 9.375" impeller	2	800	400	24	83.0%	20	2.9	5.8
One pump at full speed the other off	4BC, 1,750 rpm, 9.5" impeller	1	800	800	65	83.1%	20	16.5	16.5

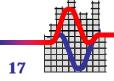


Option 2: Operating Mode B – Two pumps run at 50% speed


- One common circuit
 - Minimizes first cost penalty
 - Immune to failure of a pump
 - Not immune to a piping failure
 - Some, but not all of the piping circuit sees a 50% reduction in flow

Bell & Gossett

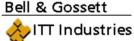

Pacific Gas and Electric Company the Pacific Energy Center


Option 2: Operating Mode B – Two pumps run at reduced speed

- One common circuit
 - Minimizes first cost penalty
 - Immune to failure of a pump
 - Not immune to a piping failure
 - Some, but not all of the piping circuit sees a 50% reduction in flow

The Power and Eff. curves shown are for the cut dia. impeller.

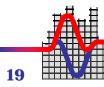
10/31/2019



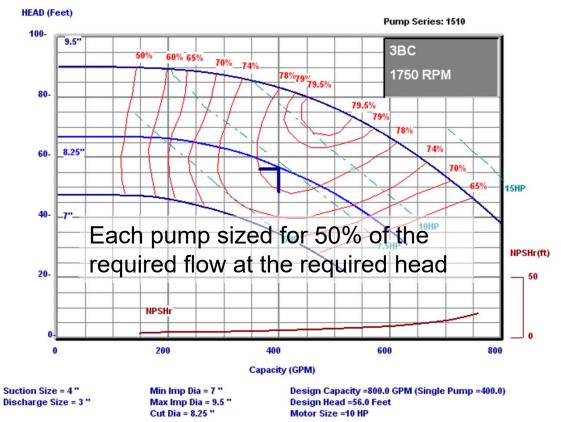

Option 2: Operating Mode B – Two pumps run at reduced speed

- One common circuit
 - Minimizes first cost penalty
 - Immune to failure of a pump
 - Not immune to a piping failure
 - Some, but not all of the piping circuit sees a 50% reduction in flow

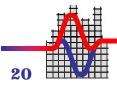
The Power and Eff. curves shown are for the cut dia. impeller.



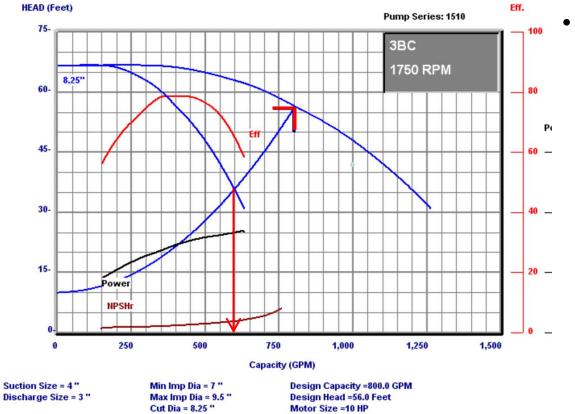
10/31/2019


Pacific Gas and Electric Company

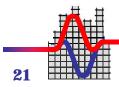
Mode	Pump Selection,		Flow	, gpm	Head,	Efficiency	Motor	Brake Hor	se Power
	Bell and Gossett Basis	Pumps Running	Total	Per Pump	ft.w.c.		Horse Power	Per Pump	Total
One pump at full speed the other off	4BC, 1,750 rpm, 9.375" impeller	1	800	800	62	83.0%	20	15.5	15.5
Both pumps run at reduced speed	4BC, 1,000 rpm, 9.375" impeller	2	800	400	24	83.0%	20	2.9	5.8
One pump at full speed the other off	4BC, 1,750 rpm, 9.5" impeller	1	800	800	65	83.1%	20	16.5	16.5
Both pumps run at reduced speed	4BC, 1,435 rpm, 9.5" impeller	2	800	400	56	77.5%	20	7.3	14.6



Option 3: Shared Circuit, Non-redundant pumps



- One common circuit
 - Lowest first cost penalty
 - Smaller pump
 - Smaller motor
 - Smaller electrical service
 - Not immune to pump or piping failure
 - Better than 50% redundant



Option 3: Shared Circuit, Non-redundant pumps

The Power and Eff. curves shown are for the cut dia. impeller.

- One common circuit
 - Lowest first cost penalty
 - Smaller pump
 - Smaller motor
 - Smaller electrical service
 - Not immune to pump or piping failure
 - Better than 50% redundant

Mode	Pump Selection,		Flow	, gpm	Head,	Efficiency	Motor	Brake Hor	se Power
	Bell and Gossett Basis	Pumps Running	Total	Per Pump	ft.w.c.		Horse Power	Per Pump	Total
One pump at full speed the other off	4BC, 1,750 rpm, 9.375" impeller	1	800	800	62	83.0%	20	15.5	15.5
Both pumps run at reduced speed	4BC, 1,000 rpm, 9.375" impeller	2	800	400	24	83.0%	20	2.9	5.8
One pump at full speed the other off	4BC, 1,750 rpm, 9.5" impeller	1	800	800	65	83.1%	20	16.5	16.5
Both pumps run at reduced speed	4BC, 1,435 rpm, 9.5" impeller	2	800	400	56	77.5%	20	7.3	14.6
Both pumps run at full speed, less than 100% redundancy	3BC, 1,750 rpm, 8.25" impeller	2	800	400	56	78.3%	10	7.2	14.4

