

Inputs

Calibration and Accuracy

Presented By:

David Sellers, Facility Dynamics Engineering

Senior Engineer

Revised 2016-11-20

Factory Calibration

- A good start
 - Addresses the factory provided components
 - Does not address the potential field impacts
 - Position effect
 - Lags
 - Lead resistance
 - A to D conversion
 - D to A conversion
 - COV limits
 - Bifocals

EME Process M	RSON. anagement	5 September	5 September, 2015		Emerson Process Management Rosemount Inc. 8200 Market Blvd Chanhassen, MN U.S. 55317-9786		
	Calibration Dat	a Sheet Consistent	with ISO	10474 3.1 or EN	10204 3.1		
Customer Information			Manufacturer Information				
Name: ILLUM PO: 150415	INATE CONTRACTING LLC		Sales Order: 4342794 Line: 1				
Device Inf	ormation		Calibr	ation Informat	tion		
Device Type: Temperature Transmitter Tag No: Serial No: 0888371			Factory: CHANHASSEN, MN, USA Station Name: FinalStn3 Operator 10: 5680				
Model No: 3144PD1A1NAP8B5M5C2Q4XA Output: Linear			Calibration Date: 9/4/2015 3:15:43PM				
100.087 50.084	100.087 DEG C 50.084 DEG C	100.078 DEG C 50.071 DEG C		20.0113 mA 12.0113 mA	-0.0164	PASS	
50.084	50.084 DEG C	50.071 DEG C		12.0113 mA	-0.0134	PASS	
Aleasuring a raceable to lesigned to	and test equipment to the National Institut meet the intent of A	used in the manuf te of Standards ar NSI Z540-1-1994	acture a nd Techr	nd inspection on nology. The ca	of the listed pro libration system	duct are n was	
Kelly Klein Vice Presiden	t of Global Quality, Appro	ovals & EHS					

Un-Calibration Use an Un-calibrated Standard

A.

320

Concernment of the second second

Un-Calibration Misread Your Instrument

Relative Calibration/Accuracy

Relative Calibration/Accuracy

Facility Dynamics

Bottom Line:

Because of relative vs. absolute accuracy, two sensors that met their specs (+/-0.5°F accuracy) took air that was the temperature you desired and used energy to heat and cool it to deliver it at the wrong temperature

Relative Calibration/Accuracy

Similar Issues Exist for Other Sensing Technologies; Measuring Flow For Example

- Many flow measurement systems are velocity pressure based
 - Velocity pressure varies as the square of the flow
 - A 50% flow reduction reduces the measured signal to 25% of what it was at 100% flow

Flow sensors assume a uniform velocity profile

- For many HVAC systems, the conditions entering and leaving the flow sensor can distort the flow profile and thus the accuracy of the measurement
- In the video that follows, watch the waves in the stream as the water approaches and departs from the rocks in it

Flow sensors calibration curves established by factory test Damper held fully open for the entire flow range Flow varied by varying fan speed on the fan in the test rig

In the real world, with a good inlet condition and a wide open damper, things tend to match up pretty well

In the real world, with a good inlet condition and a wide open damper, things tend to match up pretty well

In the real world, with a good inlet condition and a wide open damper, things tend to match up pretty well

As the terminal unit damper begins to throttle the flow profile upstream of it begins to distort because the air is directed towards the sides of the box and accelerated by the closing damper

As the terminal unit damper begins to throttle the flow profile upstream of it begins to distort because the air is directed towards the sides of the box and accelerated by the closing damper

As the terminal unit damper begins to throttle the flow profile upstream of it begins to distort because the air is directed towards the sides of the box and accelerated by the closing damper

Calibrations based on at least two data points representative of the actual extreme operating conditions of the terminal unit will generally provide better results vs. a one point calibration

Field Data from the "Show Me" State

Building Control System Data Set point 1,800 cfm Indicated Flow 1,835 cfm (102% of set point) Set point 700 cfm Indicated flow 717 cfm (102% of set point)

Field Test Data (Traverse basis)Set point1,800 cfmTraversed flow1,962 cfm(107% of indicated)Set point700 cfmTraversed flow1,125 cfm(157% of indicated)

Field Data from the "Show Me" State

Read the paper and the presentation from NCBC 2013 at <u>http://tinyurl.com/RonNCBC2013Presentation</u> and <u>http://tinyurl.com/RonNCBC2013Paper</u>