2020 RCX ACADEMY WEEK 4 AIR-SIDE SYSTEMS

3 June 2020

Lights left on

Federal Holiday

Innovative solutions for a safer, better world

US Army Corps of Engineers®

Saturday HVAC

RH VAVs

5 central AHUs

HW Boiler

Start

Assess

nvestigate

A Few References That Will Come Up

Information about COVID 19 and HVAC systems

https://av8rdas.wordpress.com/2020/05/30/taylor-engineerings-covid-19-white-paper/

Information about system effect

https://av8rdas.wordpress.com/2014/10/02/system-effectdealing-with-the-point-where-the-fanmeets-the-duct/

Information about filtration opportunities

https://www.av8rdas.com/ncbc.html#2015

Mixed air calculations spreadsheet

https://www.av8rdas.com/mixed-air-calculations.html

Economizer evaluation checklist

https://www.av8rdas.com/economizer-evaluation-checklist.html

A Few References That Will Come Up

Economizer Stratification Video

https://www.av8rdas.com/economizer-stratification.html

Economizer Stratification Blog Post

https://av8rdas.wordpress.com/2013/01/17/retrocommissioning-findings-economizer-mixed-airplenum-stratificationoverview/

Pacific Energy Center Economizers; Design, Performance and Commissioning Issues Class Materials

https://www.av8rdas.com/pacific-energy-center-design-performance-and-commissioning-issuesclasses.html#Economizers

Pacific Energy Center Fans, Ducts and AHUs; Design, Performance and Commissioning Issues Class Materials

https://www.av8rdas.com/pacific-energy-center-design-performance-and-commissioning-issuesclasses.html#Fans

Taking a Closer Look at the Ball Room AHU

Some Floor Plans to Help You Stay Oriented

AHU Overview

AHU System Overview

AHU System Overview

Ball Room Overview

Mechanical Room Plan View

Mechanical Room Plan View – AHU Interior Exposed

Damper Parts

Parallel Blade Damper

A Conventional, Flat Plate Blade Cross-Section

Greenheck's Airfoil Blade Cross-Section

-

Parallel vs. Opposed Blade Dampers

Parallel Blade Damper

Opposed Blade Damper

Dampers Need to be Sized for Modulating Control

Characteristics vary with damper design Rules of thumb

- Pressure significant relative to the system
- Target face velocity of 1,500 to 2,500 fpm will usually work
- Air flow velocity conversions count in the over-all pressure loss

Opposed Blade Characteristics are Different from Parallel Blade Characteristics

Face Velocities of 1,500 – 2,500 fpm Will Generally Get You in the Range of a Linear Flow vs. Bade Rotation Curve

Taking a Closer Look at an Economizer

Some Floor Plans to Help You Stay Oriented

Overview

Plan View

A Break and an Exercise

Given:

- 1. The economizer evaluation checklist
- 2. The images that follow
- 3. The maximum face velocity rule of thumb; Face velocities through filters and coils are generally held between 350 and 500 feet per minute to minimize the potential for blowing water off a condensing cooling coil and to manage fan energy
- 4. The damper face velocity rule of thumb: Damper face velocities probably need to be in the 1,500 to 2,500 fpm range at design flow to provide a semi-linear control characteristic

Evaluate the economizer in the Le Conte AHU

- How well do you think it mixes?
- How linear to you think the flow vs. pressure drop relationship is as the dampers stroke?
- Is the sensor located in a good position to control the dampers?
- Etc.

Mixed Air Plenum Overview

Outdoor Air and Return Air Dampers

A Even Closer-upper of the Return Dampers

The Filter Bank

A Close-up of the Filters

Looking Through the Filter Bank with No Filters

The Fan Discharge

A Temperature Sensor

The Temperature Sensor from a Different Angle

Indicators of Potential Economizer Issues

- Damper sizes are very different (outdoor air vs. return air); thus, they will have different characteristics
 - a) The resistance to flow of the outdoor air damper on 100% outdoor air will likely be less than the resistance to flow or the return air damper on 100% return air
 - b) Assuming the system does not have a large minimum outdoor air percentage and that it has a constant speed fan, as you drive to 100% OA, the fan will run out its curve and move more air than necessary (or on 100% RA, it will move less air than necessary)

- 2. No apparent independent minimum outdoor air regulation method
- 3. Damper sizing check indicates the outdoor air damper is oversized (next slide)
- 4. Single point sensor after the fan will still see stratified air due to the configuration of the fan wheel and the orientation of the fan relative to the stratification
- 5. Blade seals are mostly missing

		2020 Phone Log > June 2020 V	2	
6/3/2020 CERL Webinar Notes				4
Le Conte AHU Air Flow Estimate	Damper velocity estimate			-
Filters - 5 high, 7 wide	Outdoor Air			-
Filter size - 20 inches by 20 inches	8 modules approximately 30 inches by 24 inches			-
(20*20)/144=2.7778 sg ft.	(8*30*24)/144=40 sg.ft.			-
2.8*(5*7)=98 sg.ft.	On 100% outdoor air 45000/40 = 1125 fpm; below the rule of thumb so probably will not			-
98 <u>sg.ft</u> x 500 ft/min 90*500=45,000	work very well and not very linear. And certainly the damper will have a very different characteristic from the return air damper.			
Damper area required for rule of thumb velocity \	Detum Ain			1
At 1,500 fpm	Reium Air			+
48600/1500=32.4	2 modules approximately 30 inches by 48 inches			-
At 2 500 fpm	(2*30*48)/144 = 20 sq.ft.			
48600/2500-19 44				
48800/2500-19.44	If return flow was equal to outdoor air flow (no minimum outdoor air)			-
	45000/20=2250 fpm; should be fairly linear			-
				-
	At 8% minimum out door air the return air flow is:			
	92*45000=41400			_
	Velocity is:			-
	41400/20=2070 fpm: still should be fairly linear			

The Office Hours Challenge

Given:

- 1. The images that follow
- 2. The maximum face velocity rule of thumb;

Face velocities through filters and coils are generally held between 350 and 500 feet per minute to minimize the potential for blowing water off a condensing cooling coil and to manage fan energy

3. The formulas that follow

Estimate

- The load on the motor
- The system static pressure

The Motor Nameplate

The Motor Speed

Filter Bank

Filter Detail

The Relationship Between Slip and Motor Load

$$\left(\frac{HP_{FullLoad}}{Slip_{FullLoad}}\right) = \left(\frac{HP_{MeasuredSpeed}}{Slip_{MeasuredSpeed}}\right)$$

Therefore:

$$Slip_{MeasuredSpeed} = \left(\frac{HP_{MeasuredSpeed}}{HP_{FullLoad}} \right) \times Slip_{FullLoad}$$

And:

$$\left(\frac{HP_{FullLoad}}{Slip_{FullLoad}}\right) \times Slip_{MeasuredSpeed} = HP_{MeasuredSpeed}$$

The Relationship Between Slip and Motor Load

$$kW = \left(\frac{Flow_{cfm} \times Static_{in.w.c.}}{6,356 \times \eta_{Fan} \times \eta_{Belts} \times \eta_{Motor} \times \eta_{VSD}}\right) \times .746$$