$$
4
$$

ㅁㅁ

\section*{| $31 /$ |
| :--- |
| $3 / 15$ |}

$\square \square$ \\ \\ -
} \\ \\ \section*{How Buildings Use Heat \\ \\ \section*{How Buildings Use Heat \\ \\ \section*{How Buildings Use Heat \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ } \\ \\ \\ } \\ \\ \\ }
\square \square \qquad $+$
,

4
 .

How Buildings Use Heat

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Revisiting a Definition

Heating

- A process that adds energy
- For a space, this is often accomplished by circulating air through it at a temperature above the required set point
- For a fluid stream, this is often accomplished by passing it over a surface that is above the required supply temperature

A Few More Definitions

Ventilation

- Outdoor air that is brought into the building to manage contaminates, generally by dilution
- The outdoor air volume is dictated by:
- Type of contaminant
- Capture velocity
- Occupant count
- Code requirements
- ASHRAE Standard 62.1 is usually the basis for design
- Ventilation air typically is removed by exhaust systems

Keeping Things Safe by Controlling Contaminants

Becomes more challenging when outdoor air is below $32^{\circ} \mathrm{F}$

Keeping Things Safe by Controlling Contaminants

Becomes more challenging when outdoor air is below $32^{\circ} \mathrm{F}$

A Few More Definitions

Freezing

- A condition that occurs when water is cooled to the point where it changes phase from a solid to a liquid

A Few More Definitions

Water Damage

- A condition that occurs after frozen water contained in a HVAC coil changes back to the liquid phase

A Few More Definitions

Expletive

- A generic reference to the field terminology used to describe and discuss water damage when it occurs

A Few More Definitions

Significant Emotional Event

- An event that has life-changing emotions associated with it
- Triggering conditions:
- Flurry of expletives
- Lawsuits
- Freezing a coil is an example

How Buildings Use Heat

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Preheat

- A process that heats a fluid stream to prepare it for a subsequent HVAC process
- In air handling systems, this process is used to raise subfreezing air above freezing to protect water filled elements down stream from damage due to freezing

See the Functional Testing Guide (https://www.av8rdas.com/functional-testing-quide.html) Air Handling System Reference Guide Chapter 5 - Preheat, Table 5.1 to contrast preheat, reheat and heating applications

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this - Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Reheat

- A process that uses heat to warm air being delivered to a zone to prevent over cooling
- The temperature of the air was set by the need to hit a dehumidification target, or
- By the requirements of another zone
- Thus, it can not be raised at the central system
- The volume can not be reduced because it has been set to assure proper ventilation (contaminant control)

A Few More Definitions

Reheat

- In the limit, at the most:
- Reheat will raise the supply temperature to the zone temperature but not above it

Why Do We Overcool the Air?

What are the fundamental goals of our HVAC processes and systems? https://tinyurl.com/HeatPumpHVAC Goals

Addressing the HVAC Goals

Given that there are people in the space, we will need to provide some quantity of fresh outdoor air to control contaminants

Addressing the HVAC Goals

Given the nature of the climate and the loads, this air and any recirculated air will need to be cooled and dehumidified during warm, humid weather

ALTITUDE: 7 FEET
BAROMETRIC PRES SURE: 29.915 in . HG
ATMOSPHERIC PRESSURE: 14.693 psia

ALTITUDE: 7 FEET
BAROMETRIC PRESSURE: 29.915 in . HG

ALTITUDE: 7 FEET
BAROMETRIC PRESSURE: 29.915 in . HG
${ }_{\infty}^{\text {ATMOSPHERIC PRESSURE: } 14.693}{ }^{1.0}{ }^{1.0}$
$]_{\frac{10}{10}}^{0.8}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
$\underset{\infty}{\text { ATMO SPHERIC PRESSURE: } 14.696}{ }_{[10}^{\text {psia }}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRES SURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia ${ }_{1.0}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROME TRIC PRES SURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia
(2000

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this - Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling
- Processes
- Power Generation

A Few More Definitions

Absorption Refrigeration

- A cooling process that is driven by heat

Absorption Chiller

Absorption Chiller

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes
- Power Generation

A Few More Definitions

Humidification

- A process that adds moisture to the air
- RH levels between 40 and 60 percent are optimum for comfort and disease prevention
- The influenza virus has its highest mortality rate at 50\% percent RH
- Equipment may require specific humidity levels for optimum performance
- Production may require specific humidity levels to maintain manufacturing tolerance

A Few More Definitions

Sterilization

- A process that makes something free from bacteria or other living microorganisms
- Common in health care and laboratory applications

Indirect Steam Humidifier

Evaporative Cooler

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation

A Few More Definitions

Power Generation

- A process that generates power by converting one form of energy into a different, more useful form for the task at hand

State	\% of Total Electric Power Generation											Nonrenewable + Nuclear Percent of Total	Renewable Percent of Total	Combustion Process Generated Percent of Total	Noncombustion Process Generated Percent of Total
	Non-Renewable						Renewable Non-Combustion Processes				Nuclear				
	Combustion Processes														
	Coal	Oil	Gas	Other Fossil Fuel	Purchased, Fuel Generated	Biomass	Hydro	Wind	Solar	Geothermal					
CA	0.2\%	0.0\%	47.7\%	0.8\%	0.3\%	3.0\%	11.0\%	7.0\%	15.7\%	5.9\%	8.4\%	57.4\%	42.6\%	52.0\%	48.0\%
DC	0.0\%	0.0\%	61.3\%	0.0\%	0.0\%	31.4\%	0.0\%	0.0\%	7.3\%	0.0\%	0.0\%	61.3\%	38.7\%	92.7\%	7.3\%
DE	2.0\%	0.2\%	92.6\%	2.8\%	0.0\%	1.4\%	0.0\%	0.1\%	1.0\%	0.0\%	0.0\%	97.6\%	2.5\%	99.0\%	1.1\%
HI	12.8\%	67.8\%	0.0\%	0.0\%	1.3\%	5.0\%	1.1\%	6.4\%	5.3\%	0.1\%	0.0\%	81.9\%	17.9\%	86.9\%	12.9\%
IA	23.7\%	0.2\%	11.8\%	0.0\%	0.0\%	0.3\%	1.7\%	57.3\%	0.0\%	0.0\%	4.9\%	40.6\%	59.3\%	36.0\%	63.9\%
NH	0.8\%	0.3\%	22.3\%	0.0\%	0.0\%	5.6\%	7.5\%	3.2\%	0.0\%	0.0\%	60.4\%	83.8\%	16.3\%	29.0\%	71.1\%
NV	4.8\%	0.0\%	66.3\%	0.0\%	0.1\%	0.1\%	4.8\%	0.7\%	13.7\%	9.4\%	0.0\%	71.2\%	28.7\%	71.3\%	28.6\%
OR	2.6\%	0.0\%	29.9\%	0.0\%	0.0\%	1.6\%	50.2\%	13.8\%	1.7\%	0.3\%	0.0\%	32.5\%	67.6\%	34.1\%	66.0\%
RI	16.8\%	49.9\%	30.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.8\%	1.6\%	0.0\%	0.0\%	97.6\%	2.4\%	97.6\%	2.4\%
WA	0.0\%	0.1\%	0.1\%			21.3\%	52.4\%	17.8\%	8.4\%	0.0\%	0.0\%	0.2\%		21.5\%	78.6\%
WY	88.6\%	0.3\%	4.9\%	0.1\%	0.0\%	0.0\%	2.8\%	3.3\%	0.0\%	0.0\%	0.0\%	93.9\%	6.1\%	93.9\%	6.1\%
Minimum	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	2.4\%	18.2\%	1.1\%
Maximum	88.6\%	67.8\%	93.0\%	2.8\%	1.3\%	31.4\%	65.8\%	57.3\%	15.7\%	9.4\%	60.4\%	97.6\%	99.9\%	99.0\%	81.9\%
Average	19.8\%	2.9\%	36.2\%	0.3\%	0.1\%	3.0\%	10.2\%	9.4\%	2.3\%	0.3\%	15.4\%	74.7\%	25.3\%	62.3\%	37.7\%
US	19.3\%	0.7\%	40.5\%	0.3\%	0.1\%	1.5\%	7.0\%	8.4\%	2.2\%	0.4\%	19.6\%	80.5\%	19.5\%	62.4\%	37.6\%

A Few More Definitions

Power Generation

- The heat can come from burning things like coal

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas, oil

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas, oil, or biomass ...

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal, and nuclear energy

	Electric Power Generation						Nonrenewable + Nuclear Percent of Total	Renewable Percent of Total	Combustion Process Generated Percent of Total	Non-
		Renewable Non-Combustion Processes				Nuclear				combustion Process
	Biomass	Hydro	Wind	Solar	Geothermal					Generated Percent of Total
	3.0\%	11.0\%	7.0\%	15.7\%	5.9\%	8.4\%	57.4\%	42.6\%	52.0\%	48.0\%
	31.4\%	0.0\%	0.0\%	7.3\%	0.0\%	0.0\%	61.3\%	38.7\%	92.7\%	7.3\%
	1.4\%	0.0\%	0.1\%	1.0\%	0.0\%	0.0\%	97.6\%	2.5\%	99.0\%	1.1\%
	5.0\%	1.1\%	6.4\%	5.3\%	0.1\%	0.0\%	81.9\%	17.9\%	86.9\%	12.9\%
	0.3\%	1.7\%	57.3\%	0.0\%	0.0\%	4.9\%	40.6\%	59.3\%	36.0\%	63.9\%
	5.6\%	7.5\%	3.2\%	0.0\%	0.0\%	60.4\%	83.8\%	16.3\%	29.0\%	71.1\%
	0.1\%	4.8\%	0.7\%	13.7\%	9.4\%	0.0\%	71.2\%	28.7\%	71.3\%	28.6\%
	1.6\%	50.2\%	13.8\%	1.7\%	0.3\%	0.0\%	32.5\%	67.6\%	34.1\%	66.0\%
	0.0\%	0.0\%	0.8\%	1.6\%	0.0\%	0.0\%	97.6\%	2.4\%	97.6\%	2.4\%
	21.3\%	52.4\%	17.8\%	8.4\%	0.0\%	0.0\%	0.2\%	99.9\%	21.5\%	78.6\%
	0.0\%	2.8\%	3.3\%	0.0\%	0.0\%	0.0\%	93.9\%	6.1\%	93.9\%	6.1\%
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	2.4\%	18.2\%	1.1\%
	31.4\%	65.8\%	57.3\%	15.7\%	9.4\%	60.4\%	97.6\%	99.9\%	99.0\%	81.9\%
	3.0\%	10.2\%	9.4\%	2.3\%	0.3\%	15.4\%	74.7\%	25.3\%	62.3\%	37.7\%
	1.5\%	7.0\%	8.4\%	2.2\%	0.4\%	19.6\%	80.5\%	19.5\%	62.4\%	37.6\%

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation \checkmark Heat pumps can leverage this

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Humidification
- Power Generation

Electrification
Target

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels Good News

- Fairly simple
- High grade heat
- Fairly inexpensive

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels
Good News

- Fairly simple
- High grade heat
- Fairly inexpensive
CO_{2} Emissions for Different Fuels

Fuel	lb CO_{2} per million Btu Burned	lb CO_{2} per million Btu Delivered						
		Boiler Efficiency						
		95\%	90\%	85\%	80\%	75\%	70\%	65\%
Natural Gas	117	123	130	137	146	156	167	179
Propane	139	146	154	163	173	185	198	213
Oil	163	172	182	192	204	218	234	251
Coal	212	223	235	249	265	282	303	326
Emmis	actor Source	ps://	ia.90	ronm	issio	vol		

The Goal

Stop burning fossil fuels by switching to an all-electric grid powered by renewable resources

The Challenges

1. Currently about 60-63\% of our electricity is generated by burning something

The Challenges

2. Heat rates (efficiencies) for

 our power plants are not particularly high ...
Heat Rates for Different Types of Power Plants

Generating Station Type	Typical Heat Rate				Emissions	$\mathrm{lb} \mathrm{CO}_{2}$ per kWh Generated	
	Minimum		Maximum		$\mathrm{lb}_{\mathrm{CO}}^{2}$ per million $\mathrm{B}+u$	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency			
Natural Gas with Cogeneration	5,000	68\%	6,500	53\%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55\%	8,000	43\%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46\%	8,500	40\%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43\%	10,000	34\%	117	0.93	1.17
Coal Steam Turbine	9,000	38\%	11,000	31\%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34\%	12,000	28\%	117	1.17	1.40
Nuclear Power Plant	10,446	33\%	10,459	33\%	0	0.00	0.00
Heat Rate Source - https://energyknowledgebase.com/topics/heat-rate.asp Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php							

2. Heat rates (efficiencies) for our power plants are not particularly high and CO2 emissions potentially would not be much different
Heat Rates for Different Types of Power Plants

Generating Station Type

The Challenges

3. Distribution losses are in the range of 5-6\% between the switch yard at the power plant and your meter

Generating Station Type	Typical Heat Rate				Emissions	$\mathrm{lb} \mathrm{CO}_{2}$ per kWh Generated	
	Minimum		Maximum		lb CO_{2} per million Btu	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency			
Natural Gas with Cogeneration	5,000	68\%	6,500	53\%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55\%	8,000	43\%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46\%	8,500	40\%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43\%	10,000	34\%	117	0.93	1.17
Coal Steam Turbine	9,000	38\%	11,000	31\%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34\%	12,000	28\%	117	1.17	1.40
Nuclear Power Plant	10,446	33\%	10,459	33\%	0	0.00	0.00
Heat Rate Source Emmissions Factor Source -	$\begin{aligned} & \text { tps://enero } \\ & \text { tps://www. } \end{aligned}$	wledgebase. /environme	topics/heat missions/co	L.asp			

The Challenges

4. It will take a very significant investment in additional infrastructure to support the distribution required for an allelectric renewable energy supplied grid

Generating Station Type	Typical Heat Rate				Emissions	$\mathrm{lb}^{\text {CO}} 2$ per kWh Generated	
	Minimum		Maximum		$\mathrm{lb} \mathrm{CO}_{2}$ per million Btu	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency			
Natural Gas with Cogeneration	5,000	68\%	6,500	53\%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55\%	8,000	43\%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46\%	8,500	40\%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43\%	10,000	34\%	117	0.93	1.17
Coal Steam Turbine	9,000	38\%	11,000	31\%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34\%	12,000	28\%	117	1.17	1.40
Nuclear Power Plant	10,446	33\%	10,459	33\%	0	0.00	0.00
Heat Rate Source -	$\mathrm{ps}: / /$ enero	wledgebase.	topics/heat	asp			

The Challenges

4. Energy storage systems will also be needed with related investments

The Challenges

5. There may be things going on that we have yet to fully appreciate

> The relative contribution of waste heat from power plants to global warming
> R. Zevenhoven ${ }^{\text {a,* }, ~ A . ~ B e y e n e ~}{ }^{\text {b }}$
> adepartment of Chemical Engineering, Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, Fl-20500 Âbo/Turku, Finland bepartment of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA

ARTICLE INFO

Article history:

Received 2 March 2010
Received in revised form
Received in revised form
26 August 2010
Accepted 6 October 2010
Available online 3 November 2010

Keywords:

Global warming
Thermal power plant
Greenhouse gases
Waste heat

Abstract

Evidence on global climate change, being caused primarily by rising levels of greenhouse gases in the atmosphere, is perceived as fairly conclusive. It is generally attributed to the enhanced greenhouse effect, resulting from higher levels of trapped heat radiation by increasing atmospheric concentrations of gases such as CO_{2} (carbon dioxide). Much of these gases originate from power plants and fossil fuel combustion. However, the fate of vast amounts of waste heat rejected into the environment has evaded serious scholarly research. While 1 kWh electricity generation in a typical condensing coal-fired power plant emits around 1 kg of CO_{2}, it also puts about 2 kWh energy into the environment as low grade heat. For nuclear (fission) electricity the waste heat release per kWh is somewhat higher despite much lower CO_{2} releases. This paper evaluates the impact of waste heat rejection combined with CO_{2} emissions using Finland and California as case examples. The immediate effects of waste heat release from power production and radiative forcing by CO_{2} are shown to be similar. However, the long-term (hundred years) global warming by CO_{2}-caused radiative forcing is about twenty-five times stronger than the immediate effects, being responsible for around 92% of the heat-up caused by electricity production. © 2010 Elsevier Ltd. All rights reserved.

The Challenges

5. There may be things going on that we have yet to fully appreciate

Time for Another Question

Let's "connect a few dots" https://tinyurl.com/HeatPump ConnectDots

Recall That:

- Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location

Recall That:

- Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location
- The COP (Coefficient of Performance) defines how much energy they need to spend relative to the energy they move
- COPs can be easily be 3 or higher

Coefficient of performance for a heat pump
$\operatorname{cOP}_{\text {Heating }}=\frac{Q_{\text {Heat }}}{W_{\text {In }}}$
or, solving for $Q_{\text {Heat }}$
$Q_{\text {Heat }}=C O P_{\text {Heating }} \times W_{\text {In }}$
Where:

COP $P_{\text {Heating }}=$ Coefficient of performance as a heat pump
$Q_{\text {Heat }}=$ The heat delivered to the area served in consistent units, which is the heat rejected by the heat pump
$W_{I n} \quad=\quad$ The work done to deliver the heat in consistent units

As a Result:

CO_{2} Emissions for Different Fuels

Fuel	Ib CO_{2} per million Btu Burned	lb CO_{2} per million Btu Delivered by Boilers						
		Boiler Efficiency						
		95\%	90\%	85\%	80\%	75\%	70\%	65\%
Natural Gas	117	123	130	137	146	156	167	179
Propane	139	146	154	163	173	185	198	213
Oil	163	172	182	192	204	218	234	251
Coal	212	223	235	249	265	282	303	326

Ib CO_{2} per Million Btu Delivered as Electric Resistance Heat *

Reducing Atmospheric Impacts

We expect our energy mix to be 70\% carbon free by 2040 based on current commitments and mandates, and we're working to deliver the right resources and technologies to make that happen

Energy Strategy; www.portlandgeneral.com

Integrated Resource Planning

Preparing for Oregon's energy future

Reducing Atmospheric Impacts

Moving away from carbon fuels is a common, long-term goal for many utilities

XYZ Power Company Generating Mix

Reducing Atmospheric Impacts

- Applying the commissioning tool set can have an immediate impact by reducing the need for energy in the first place
- Using heat pumps to leverage the electricity we use to create heat makes best use of the electricity consumed to create heat

It's a win-win situation

XYZ Power Company Generating Mix

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Humidification
- Power Generation

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Humidification
- Power Generation

Electrification Target

Heat Pump
Target

Conservation/ EBCx Target

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Humidification
- Power Generation

Electrification Target

Heat Pump
Target

Conservation/ EBCx Target

Heat pumps and best practices in terms of ongong commissioning use our power to best advantage

Question?

