

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Revisiting a Definition

Heating

- A process that adds energy
 - For a space, this is often accomplished by circulating air through it at a temperature above the required set point
 - For a fluid stream, this is often accomplished by passing it over a surface that is above the required supply temperature

Ventilation

- Outdoor air that is brought into the building to manage contaminates, generally by dilution
- The outdoor air volume is dictated by:
 - Type of contaminant
 - Capture velocity
 - Occupant count
 - Code requirements
- ASHRAE Standard 62.1 is usually the basis for design
- Ventilation air typically is removed by exhaust systems

Keeping Things Safe by Controlling Contaminants

Becomes more challenging when outdoor air is below 32°F

Charley JKTON PERCHIPINES, menual analysis in hid from Payle Games Select General

Keeping Things Safe by Controlling Contaminants

Becomes more challenging when outdoor air is below 32°F

Charling JKTOR PERCHARGETRICS, menual investigation in Fel TransPayer General Selection II General and

Freezing

 A condition that occurs when water is cooled to the point where it changes phase from a solid to a liquid

Water Damage

 A condition that occurs after frozen water contained in a HVAC coil changes back to the liquid phase

Expletive

 A generic reference to the field terminology used to describe and discuss water damage when it occurs

Significant Emotional Event

- An event that has life-changing emotions associated with it
- Triggering conditions:
 - Flurry of expletives
 - Lawsuits
- Freezing a coil is an example

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Preheat

- A process that heats a fluid stream to prepare it for a subsequent HVAC process
- In air handling systems, this process is used to raise subfreezing air above freezing to protect water filled elements down stream from damage due to freezing

See the Functional Testing Guide (<u>https://www.av8rdas.com/functional-testing-guide.html</u>) Air Handling System Reference Guide Chapter 5 – Preheat, Table 5.1 to contrast preheat, reheat and heating applications

- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

- Reheat
- Cooling
- Processes
- Power Generation

Reheat

- A process that uses heat to warm air being delivered to a zone to prevent over cooling
 - The temperature of the air was set by the need to hit a dehumidification target, or
 - By the requirements of another zone
 - Thus, it can not be raised at the central system
 - The volume can not be reduced because it has been set to assure proper ventilation (contaminant control)

Reheat

- In the limit, <u>at the most</u>:
 - Reheat will raise the supply temperature <u>to</u> the zone temperature but not <u>above</u> it

Why Do We Overcool the Air?

What are the fundamental goals of our HVAC processes and systems? <u>https://tinyurl.com/HeatPumpHVAC</u> <u>Goals</u>

Addressing the HVAC Goals

Given that there are people in the space, we will need to provide some quantity of fresh outdoor air to control contaminants

Addressing the HVAC Goals

Given the nature of the climate and the loads, this air and any recirculated air will need to be cooled and dehumidified during warm, humid weather

- Reheat 🗸
- Cooling
- Processes
- Power Generation

- Cooling
- Processes
- Power Generation

Absorption Refrigeration

- A cooling process that is driven by heat

Absorption Chiller

Absorption Chiller

- Cooling
- Processes
- Power Generation

- Processes
- Power Generation

Humidification

- A process that adds moisture to the air
 - RH levels between 40 and 60 percent are optimum for comfort and disease prevention
 - The influenza virus has its highest mortality rate at 50% percent RH
 - Equipment may require specific humidity levels for optimum performance
 - Production may require specific humidity levels to maintain manufacturing tolerance

Sterilization

- A process that makes something free from bacteria or other living microorganisms
 - Common in health care and laboratory applications

Indirect Steam Humidifier

Evaporative Cooler

- Processes
- Power Generation

- Power Generation

Power Generation

 A process that generates power by converting one form of energy into a different, more useful form for the task at hand

State					% of Total E	Electric Power	• Generation					Non-	Renewable	Combustion	Non-
		N	lon-Renewab	le				Renewable			Nuclear	renewable +	Percent of	Process	combustion
			Combustio	n Processes			Non-Combustion Processes				Nuclear	Total	Generated	Process	
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
				Fuel	Fuel							Total		Total	Percent of
					Generated										Total
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
WУ	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

- The heat can come from burning things like coal

State					% of Total	Electric Power
		Ν	Jon-Renewabl	e		
			Combustion	Processes		
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass
				Fuel	Fuel	
					Generated	
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%
WУ	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%

Power Generation

- The heat can come from burning things like coal, gas

State					% of Total	Electric Power
		١	Jon-Renewabl	e		
			Combustion	Processes		
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass
				Fuel	Fuel	
					Generated	
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%
WУ	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%

Power Generation

- The heat can come from burning things like coal, gas, oil

State					% of Total	Electric Power
		Ν	Jon-Renewabl	e		
			Combustion	Processes		
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass
				Fuel	Fuel	
					Generated	
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%
WУ	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%

Power Generation

 The heat can come from burning things like coal, gas, oil, or biomass ...

State					% of Total	Electric Power
		Ν	Jon-Renewabl	e		
			Combustion	Processes		
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass
				Fuel	Fuel	
					Generated	
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%
WУ	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind

ectric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes			Nuclear	Total	Generated	Process
Biomass	s Hydro Wind Solar Geothern		Geothermal		Percent of		Percent of	Generated	
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind

lectric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes			Nuclear	Total	Generated	Process
Biomass	Hydro Wind Solar Geothermal			Percent of		Percent of	Generated		
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71,1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar

ectric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes			Nuclear	Total	Generated	Process
Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar

Electric Powe	r Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes	5		Nuclear	Total	Generated	Process
Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71,1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal

Electric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
	1	Non-Combusti	ion Processes			Nuclear	Total	Generated	Process
Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal, and nuclear energy

Electric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes	5		Nuclear	Total	Generated	Process
Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1,5%	7.0%	8.4%	2,2%	0.4%	19.6%	80,5%	19.5%	62.4%	37.6%

- Power Generation

Electrification

Target

Application

- Heating
- Preheat
- Reheat 🗸
- Cooling
- Humidification
- Power Generation

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels Good News

- Fairly simple
- High grade heat
- Fairly inexpensive

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels Good News **Bad News**

- Fairly simple
- High grade heat
- Fairly inexpensive

CO₂ Emissions for Different Fuels

Fuel Ib CO₂ per million Btu Delivered Ib CO_2 per million Btu **Boiler Efficiency** Burned 95% 85% 80% 75% 90% 70% 65% Natural Gas 146 117 123 130 137 156 167 179 Propane 139 146 154 163 173 185 198 213 Oil 251 163 172 182 192 204 218 234 Coal 212 223 235 249 265 282 303 326

Emmissions Factor Source https://www.eia.gov/environment/emissions/co2 vol mass.php

CO₂ Intensive

Stop burning fossil fuels by switching to an all-electric grid powered by renewable resources

 Currently about 60-63% of our electricity is generated by burning something

2. Heat rates (efficiencies) for our power plants are not particularly high ...

Heat Rates for Different Types of Power Plants

Generating Station Type		Typical F	leat Rate		Emissions	lb CO ₂ per kV	Vh Generated
	Mini	mum	Max	imum	lb CO₂ per	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu		
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40
Nuclear Power Plant	10,446	33%	10,459	33%	0	0.00	0.00
Heat Rate Source -	https://energyk	nowledgebase.co	m/topics/heat-r	ate.asp			

Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php

2. Heat rates (efficiencies) for our power plants are not particularly high and CO2 emissions potentially would not be much different

Heat Rates for Different Types of Power Plants

Generating Station Type		Typical F	leat Rate	Emissions	lb CO_2 per kWh Generated					
	Minimum		Maxi	imum	lb CO2 per	Minimum	Maximum			
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu					
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76			
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93			
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99			
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17			
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33			
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40			
Nuclear Power Plant	10,446	33%	10,459	33%	0	0.00	0.00			
Heat Rate Source - https://energyknowledgebase.com/topics/heat-rate.asp										

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per		lb CC	lb CO ₂ per Million Btu Delivered as Electric					
	million Btu								
	Burned	95%	90%	85%	80%	75%	70%	65%	Resistance Heat *
Natural Gas	117	123	130	137	146	156	167	179	
Propane	139	146	154	163	173	185	198	213	214
Oil	163	172	182	192	204	218	234	251	214
Coal	212	223	235	249	265	282	303	326	
- · ·	F 1 C	1 //	. ,		1	0			

Emmissions Factor Source - <u>https://www.eia.gov/environment/emissions/co2_vol_mass.php</u>

Heat Rate Source - "Heat Rates" tab of this spreadsheet

* This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab

3. Distribution losses are in the range of 5-6% between the switch yard at the power plant and your meter

Heat Rates for Different Types of Power Plants									
Generating Station Type		Typical H	leat Rate	Emissions	lb CO ₂ per kWh Generated				
	Minimum		Max	imum	lb CO2 per	Minimum	Maximum		
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu				
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76		
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93		
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99		
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17		
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33		
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40		
Nuclear Power Plant	10,446	33%	10,459	33%	0	0.00	0.00		
Heat Rate Source - https://energyknowledgebase.com/topics/heat-rate.asp									
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php									

4. It will take a very significant investment in additional infrastructure to support the distribution required for an allelectric renewable energy supplied grid

Heat Rates for Different Types of Power Plants									
Generating Station Type		Typical F	leat Rate	Emissions	lb CO ₂ per kWh Generated				
	Mini	mum	Max	imum	lb CO2 per	Minimum	Maximum		
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu				
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76		
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93		
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99		
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17		
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33		
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40		
Nuclear Power Plant	10,446	33%	10,459	33%	0	0.00	0.00		
Heat Rate Source -	https://energyk	nowledgebase.co	m/topics/heat-r	ate.asp					
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php									

4. Energy storage systems will also be needed with related investments

5. There may be things going on that we have yet to fully appreciate

The relative contribution of waste heat from power plants to global warming

R. Zevenhoven^{a,*}, A. Beyene^b

^aDepartment of Chemical Engineering, Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland ^bDepartment of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA

ARTICLE INFO

Article history: Received 2 March 2010 Received in revised form 26 August 2010 Accepted 6 October 2010 Available online 3 November 2010

Keywords: Global warming Thermal power plant Greenhouse gases Waste heat

ABSTRACT

Evidence on global climate change, being caused primarily by rising levels of greenhouse gases in the atmosphere, is perceived as fairly conclusive. It is generally attributed to the enhanced greenhouse effect, resulting from higher levels of trapped heat radiation by increasing atmospheric concentrations of gases such as CO_2 (carbon dioxide). Much of these gases originate from power plants and fossil fuel combustion. However, the fate of vast amounts of waste heat rejected into the environment has evaded serious scholarly research. While 1 kWh electricity generation in a typical condensing coal-fired power plant emits around 1 kg of CO_2 , it also puts about 2 kWh energy into the environment as low grade heat. For nuclear (fission) electricity the waste heat release per kWh is somewhat higher despite much lower CO_2 releases. This paper evaluates the impact of waste heat rejection combined with CO_2 emissions using Finland and California as case examples. The immediate effects of waste heat release from power production and radiative forcing by CO_2 are shown to be similar. However, the long-term (hundred years) global warming by CO_2 -caused radiative forcing is about twenty-five times stronger than the immediate effects, being responsible for around 92% of the heat-up caused by electricity production.

© 2010 Elsevier Ltd. All rights reserved.

The Challenges

5. There may be things going on that we have yet to fully appreciate

The relative contribution of waste heat from power plants to global warming

R. Zevenhoven^{a,*}, A. Beyene^b

^aDepartment of Chemical Engineering, Thermal and Flow Engineering Laboratory, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland ^bDepartment of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA

ARTICLE INFO

ABSTRACT

Article history: Received 2 March 2010 Received in revised form 26 August 2010 Accepted 6 October 2010 Available online 3 November 2010

Keywords: Global warming Thermal power plant Greenhouse gases Waste heat Evidence on global climate change, being caused primarily by rising levels of greenhouse gases in the atmosphere, is perceived as fairly conclusive, it is generally attributed to the enhanced greenhouse effect, resulting from higher levels of trapped heat radiation by increasing atmospheric concentrations of gases such as CO₂ (carbon dioxide). Much of these gases originate from power plants and fossil fuel combustion. However, the fate of vast amounts of waste heat rejected into the environment has evaded exirous scholarly research. While I LWN electricity generation in a typical condensing coal-fired power plant emits around 1 kg of CO₂; it also puts about 2 kWh energy into the environment as low grade heat. For nuclear (fission) electricity the waste heat release per kWh is somewhat higher despite much lower C₂ releases. This paper evaluates the impact of waste heat release the CO₂ releases. This paper evaluates the impact of waste heat release from combined with CO₂ emissions using Finland and California as case examples. The immediate effects of waste heat release from power effects, being responsible for around 92X of the heat-up caused by electricity production.

© 2010 Elsevier Ltd. All rights reserved.

Time for Another Question

Let's "connect a few dots" https://tinyurl.com/HeatPump ConnectDots

Recall That:

 Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location

Recall That:

- Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location
- The COP (Coefficient of Performance) defines how much energy they need to spend relative to the energy they move
- COPs can be easily be 3 or higher

Coefficient of performance for a heat pump

$$COP_{Heating} = \frac{Q_{Heat}}{W_{In}}$$

or, solving for \mathcal{Q}_{Heat}

$$Q_{Heat} = COP_{Heating} \times W_{In}$$

Where:

WTn

COP_{Heating} = Coefficient of performance as a heat pump

- Q_{Heat} = The heat delivered to the area served in consistent units, which is the heat rejected by the heat pump
 - The work done to deliver the heat in consistent units

As a Result:

CO₂ Emissions for Different Fuels

Fuel	lb CO2 per	lb CO2 per million Btu Delivered by Boilers							lb CO2 per Million Btu	lb CO2 per Million Btu
	million Btu		Boiler Efficiency						Delivered as Electric	Delivered by a Heat Pump
	Burned	95%	90%	85%	80%	75%	70%	65%	Resistance Heat *	with a COP of 3.7*
Natural Gas	117	123	130	137	146	156	167	179		
Propane	139	146	154	163	173	185	198	213	214	91
Oil	163	172	182	192	204	218	234	251		
Coal	212	223	235	249	265	282	303	326		
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php										
Heat Rate Source - <u>"Heat Rates" tab of this spreadsheet</u>										
* This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab										

Reducing Atmospheric Impacts

We expect our energy mix to be 70% carbon free by 2040 based on current commitments and mandates, and we're working to deliver the right resources and technologies to make that happen

Energy Strategy; <u>www.portlandgeneral.com</u>

Integrated Resource Planning

Preparing for Oregon's energy future

Reducing Atmospheric Impacts

Moving away from carbon fuels is a common, long-term goal for many utilities

Wind and Solar Hydro Purchased Power Natural Gas Energy Storage Coal

XYZ Power Company Generating Mix

Reducing Atmospheric Impacts

- Applying the commissioning tool set can have an immediate impact by reducing the need for energy in the first place
- Using heat pumps to leverage the electricity we use to create heat makes best use of the electricity consumed to create heat

It's a win-win situation

XYZ Power Company Generating Mix

How Buildings Use Heat

Application

- Heating
- Preheat 🗸
- Reheat 🗸
- Cooling
- Humidification ✓
- Power Generation

How Buildings Use Heat

Application

- Heating
- Preheat 🗸
- Reheat 🗸
- Cooling
- Humidification
- Power Generation

How Buildings Use Heat

Electrification

Target

Application

- Heating
- Preheat 🗸
- Reheat 🗸
- Cooling
- Humidification
- Power Generation

Heat pumps and best practices in terms of ongong commissioning use our power to best advantage

Heat Pump

Target

Conservation/

EBCx Target

Question?

"PG&E" refers to Pacific Gas and Electric Company, a subsidiary of PG&E Corporation. ©2017 Pacific Gas and Electric Company. All rights reserved. These offerings are funded by California utility customers and administered by PG&E under the auspices of the California Public Utilities Commission.