

How Water and Steam Systems; Basic Principles, Ongoing Commissioning, Operation, and Optimization

Please Visit This Link While We Are Waiting to Begin

https://tinyurl.com/Lcl39SteamHHWD1Intro

Presented By:

David Sellers

Senior Engineer, Facility Dynamics Engineering

Disclaimer

- The information in this document is believed to accurately describe the technologies described herein and are meant to clarify and illustrate typical situations, which must be appropriately adapted to individual circumstances. These materials were prepared to be used in conjunction with a free, educational program and are not intended to provide legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas and Electric Company (PG&E) nor any of its employees and agents:
- Makes any written or oral warranty, expressed or implied, including, but not limited to, those concerning merchantability or fitness for a particular purpose;
- Assumes any legal liability or responsibility for the accuracy or completeness of any information, apparatus, product, process, method, or policy contained herein; or
- Represents that its use would not infringe any privately owned rights, including, but not limited to, patents, trademarks, or copyrights.

Copyright Materials

Some or all of this presentation may be protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the copyright holder is prohibited

Learning Objectives

Attendees will be able to:

- 1. Define How Heat is Generated, Distributed and Transferred in Buildings and How Buildings Use Heat
- 2. Recognize Key Differences Between Steam and Hot Water Systems
- 3. Describe the Different Types of Heating Processes Used in Buildings
- 4. Identify Opportunities to Improve Performance and Save Energy with HHW and Steam Systems.

Agenda

- 1. Introduction
- 2. How Buildings Use Heat
- 3. Steam Systems

Introductions

Introductions

https://tinyurl.com/ Lcl39SteamHHW D1Intro

I intended to be an aircraft maintenance engineer

I intended to be an aircraft maintenance engineer

I'm doing something <u>totally</u> different

I'm doing something <u>totally</u> different

HVAC field technician

- HVAC field technician
- Control system designer

- HVAC field technician
- Control system designer
- HVAC designer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- PECI technical support engineer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer and trainer

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer and trainer
- FDE Senior Engineer

I've Had Great Mentors Along the Way

Bill Coad's Thoughts on Energy Conservation

"... that is to practice our profession with an emphasis upon our responsibility to protect the long-range interests of the society we serve and, specifically, to incorporate the ethics of energy conservation and environmental preservation in everything we do."

Energy Conservation is an Ethic ASHRAE Journal, vol. 42, no. 7, p. 16-21

PDF available at https://tinyurl.com/EnergyConservationEthic

Favori 🗔

https://tinyurl.com/CxResourceList

Resource List

The list is organized by the ten key technical skills we thing are important for anyone who wants to work in the commissioning and building operations fields. If you want to know what we think those skills are and why, just click here.

If you turn on the bookmarks in the .pdf document (typically, you can do that by clicking on the little ribbon shaped icon on the left side of the Acrobat window), you will links that will let you easily and quickly move around in the document. The document also includes a description of how to navigate through it in a section that starts on page 2.

We try to update the document every year or so, adding new things we have found, removing items that are obsolete, and verifying to the extent possible that the links all work. So, you may want to check back every once-in-a-while to see if there is a newer version or if a link in your version no longer works.

If you discover a link that is not working or have a resource you want to suggest we add to the list, let us know and we will check into it.

N.W. Satellite Office IS60 North Buchanan Avenue

Home Office 6769 Alexander Bell Drive, Suite 200 Columbia, MD 21046 Phone: (410) 290-0900

Resources and Reading List

Date: November 2, 2011, (Revised October 9, 2014)

Overview

Over the years, one of the challenges we have faced in delivering technical classes for the Pacific Energy Center, the University of Wisconsin, SMUD, and other venues is to establish a common level of understanding of the fundamentals behind the topics to be discussed. Classes are often attended by people with a broad range of experience, including operators and facilities engineers who deal with technical issue and machinery on a day to day basis at one end of the technical spectrum and people new to the industry or who function more in management roles than technical roles at the other end. There can also be people with very deep knowledge in a focused area of expertise who have less depth in other

Initially, we tried to address this by starting with the fundamentals and working our way up to the targeted content. But this tended to frustrate the more experienced attendees, reduced the time we had to spend on the intended topic, and could be overwhelming for the less experienced folks because we went

Over the past several years, we have successfully experimented with a different approach where-in we distribute a resource and reading list to attendees prior to class to allow them to self-educate where necessary. Typically, we supplement this list with a class specific cover memorandum to focus the preclass preparation effort on topics we feel it is essential for you to understand to fully appreciate the class content that is associated with the class. This affords opportunity to everyone to come into the class at about the same level in terms of background knowledge. And the list serves as a resource for further reference and learning after the class.

Version 15 of the list (indicated by the "v15" in the file name) went through a major reorganization from the previous list. Specifically, the resources were categorized to follow the ten key retrocommissioning skills I discuss in the blog post titled Kev Retrocommissioning Skills. In the past, I have coded changes by using a colored italic font, usually red. But with the reorganization, everything would have been in red italic font. So, I reserved colored font convention to highlight items that have been added to the list since the last time it was updated no matter how they are organized. So, new items will be highlighted in green italic font (someone told me red meant that I was velling at them, which I'm not, so sorry if I created that impression in the past; besides green is my favorite color).

Generally, all of the resources are publically available via the internet or by simply showing up in person someplace and asking for them. And many of them are free all-though some may require a modest

http://www.av8rdas.com/ebcx-skills-guidebook.html

Existing Building Commissioning Skills Guidebook

The guidebook is organized using the 10 Key Commissioning Skills as a framework and provides:

- A description and example of why the skill is important;
- Learning objectives to help guide a self study effort;
- Links to primary resources that can be used to learn about the skill in a self study effort;
- Links to secondary resources that can be used to dig in deeper if you have a particular interest in a particular

The 10 Skills Learning Objectives Checklist is intended to complement the guidebook by providing a list of all of the learning objectives with a check-box that allows you to track your progress as you work your way through the guidebook in a self study effort.

EBCx Skills Guidebook (ebcx technical skills guidebook v2017-07-07 web.pdf) Download File

10 Skills Learning Objectives Checklist (skills table web v5.xlsx) Download File

Introduction

Over the years, Facility Dynamics has been involved with providing technical training with a focus on existing building commissioning in a number of different venues and for a number of different clients including the Pacific Energy Center, Marriott, and IMCOM. For those programs, I have frequently been the lead technical trainer.

As the training agendas evolved, it started to become clear that there were a number of key skills that it would be desirable to develop if you were going to pursue existing building commissioning. About 5 years ago, Russ Good and Barry Estes of Marriott International asked me to make a list of the ten most important skills and to complement it with a list of the three primary resources that were available were available to help develop each skill.

At that point in time, I had already compiled a list of technical resources that we used to support the classes, but it was about 40 pages long and always growing. So, it could be a bit overwhelming if you were just getting into this and Russ and Barry wanted me to figure out how to focus things a bit.

That forced me to think about what really mattered from a technical stand point if you are out in the field doing this sort of work. It was really hard for me to whittle the list down to only 10 skills, but Barry and Russ were pretty firm on that, and I finally pulled it off. Truth be told, I kind of cheated in a way because I made one of the skills Familiarity with HVAC fundamentals and then put 10 sub-skills under that.

But the exercise was a really good one and when I was finished, I realized that the list was a pretty good framework for organizing the technical side of any of the training classes and I have been using it ever since in that manner. In addition, I reorganized the resource list so that the resources were grouped under headings that correlated with the 10 skills.

I also should point out that while the driver for developing the list of the 10 skills was Existing Building Commissioning training, the skills really apply across the boards. In other words, you generally will use the same skills for new construction commissioning, ongoing commissioning, and general building operations.

In fact, one of my little jokes in class is that there are all sorts of names and acronyms applied to processes where you apply the 10 skills, including Existing Building Commissioning, EBCx, Retrocommissioning, RCx, Building Tune-ups, Ongoing Commissioning, NCx, Facility Operations, etc. I have had the opportunity to work on projects where all of those names have been applied to what I was doing.

But when I think about it, all of them generally are technically the same thing that I was doing back in 1976, when I first became involved with the industry. Back then, we just called it

© Brother Placid Sellers; Saint Vincent Archabbey, Latrobe, Pennsylvania

Buildings are Talking to Us

We Just Need to Learn How to Listen

ENGINEERING

W Home

My Goal

Welcome to A Field Perspective on Engineering's commissioning resource website. For those who don't know me from my blog or some other venue, I am a senior engineer for a company named Facility Dynamics Engineering a.k.a FDE, which specializes in commissioning, control system design, and some forensic engineering work.

🗙 🎍 Facility Dynamics is a consulting 🔻 😾 Pacific Northwest Environmental 🗶 🎉 Map Results | Wind, Forecast, Ra 🗴

G Google

http://www.av8rdas.com/

My Most Important Lesson

It's all about the load profile

My Most Important Lesson

It's all about the load profile, both daily and seasonal

The Built Environment

- Keeping the built environment safe, productive, clean, and comfortable is a fundamental goal of HVAC systems and their controls
 - Ventilation systems control contaminants by introducing filtered, conditioned outdoor air
 - Heating and cooling systems track the loads to control comfort

Internal Gains = Heat Recovery Potential

The current drive towards electrification and heat pumps may make the internal gains we threw away with an economizer cycle a resource for offsetting perimeter loads

Internal Gains = Heat Recovery Potential

For many facilities the electrical consumption expressed as Btus equals or exceeds the thermal consumption

Annual Building Energy Consumption Totals

Facility Description	Annual Site	Annual Site	Thermal vs. Electric Difference	
	Thermal, kBtu	Electric, kBtu	kBtu (Positive	% of thermal met
			means thermal	by electrical when
			exceeds electrical)	electrical
				converted to heat
Monterey, California Office/Training Facility	1,299,800	1,245,199	54,601	96%
Monterey, California Dental Clinic	402,149,182	650,914,664	-248,765,482	162%
Seattle High-rise Office and Courthouse	589,732,280	938,067,784	-348,335,504	159%
Columbus Ohio Full Service High Rise Hospitality Facility	36,513,882,901	22,107,926,113	14,405,956,788	61%
San Francisco California Full Service High Rise Hospitality Facility	18,507,084,000	20,176,973,400	-1,669,889,400	109%

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Revisiting a Definition

Heating

- A process that adds energy
 - For a space, this is often accomplished by circulating air through it at a temperature above the required set point
 - For a fluid stream, this is often accomplished by passing it over a surface that is above the required supply temperature

Ventilation

- Outdoor air that is brought into the building to manage contaminates, generally by dilution
- The outdoor air volume is dictated by:
 - Type of contaminant
 - Capture velocity
 - Occupant count
 - Code requirements
- ASHRAE Standard 62.1 is usually the basis for design
- Ventilation air typically is removed by exhaust systems

Keeping Things Safe by Controlling Contaminants

 Can be quite challenging as the climate varies from day to day

 Can be quite challenging as the climate varies from day to day

Keeping Things Safe by Controlling Contaminants

- Can be quite challenging as the climate varies from day to day
- Becomes more challenging when outdoor air is below 32°F

Freezing

 A condition that occurs when water is cooled to the point where it changes phase from a solid to a liquid

Water Damage

 A condition that occurs after frozen water contained in a HVAC coil changes back to the liquid phase

Expletive

 A generic reference to the field terminology used to describe and discuss water damage when it occurs

Significant Emotional Event

- An event that has life-changing emotions associated with it
- Triggering conditions:
 - Flurry of expletives
 - Lawsuits
- Freezing a coil is an example

- Heating ✓
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

- Heating
 Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Preheat

- A process that heats a fluid stream to prepare it for a subsequent HVAC process
- In air handling systems, this process is used to raise subfreezing air above freezing to protect water filled elements down stream from damage due to freezing

See the Functional Testing Guide (https://www.av8rdas.com/functional-testing-guide.html) Air Handling System Reference Guide Chapter 5 – Preheat, Table 5.1 to contrast preheat, reheat and heating applications

Coil discharge temperature regulation strategy

 Coil discharge temperature regulation by mixing air that passes through the coil

 Coil discharge temperature regulation by mixing air that passes through the coil with air that bypasses the coil

 Coil discharge temperature regulation by mixing air that passes through the coil with air that bypasses the coil

Why Face and Bypass

Flow remains steady in the steam/water side of the coil

- Keeps the coil face active
 - Ensures dehumidification for cooling and dehumidification applications
 - Ensures freeze protection for preheat applications
- Moving water is less likely to freeze
- Compatible with water systems requiring constant flow

- "Wing" coil
- Targeted at preheat applications
- Ensures steam coils will not freeze

An

Alternative

Approach

Horizontal supply and return headers are located out of the air stream

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements
- "Clam shell" dampers around finned tubes direct air around the tubes ...

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements
- "Clam shell" dampers around finned tubes direct air around the tubes ...

... or through

the tubes

Control Considerations

- Damper sizing is critical for linear control response
 - Low velocity required at the coil face to minimize coil pressure drop and carry over
 - Deep coils have high pressure drops
 - The bypass side needs to be sized for the combined pressure drop of the coil and face damper

Control Considerations

- Water/steam side is typically on or off
- Temperature control achieved via damper modulation
- Hot water and steam coils can see significant temperature rises in full bypass
 - 4°F or more
 - Parasitic load
 - Shut down heat source when its not needed

Constant Volume Pumped Hot Water Preheat Coil

Preheat Bottom Lines

- Just because a coil is piped to hot water or steam does not mean it can safely deal with subfreezing air
- Freeze protection and sensing elements need to be installed to reflect/compensate for:
 - Non-uniform flow conditions
 - Temperature stratification
- The control system can not compensate for equipment that is not configured and piped to handle sub-freezing air
- The control system will be the first thing blamed if a coil freezes

How Buildings Use Heat

- Heating
 Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating

 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Reheat

- A process that uses heat to warm air being delivered to a zone to prevent over cooling
 - The temperature of the air was set by the need to hit a dehumidification target, or
 - By the requirements of another zone
 - Thus, it can not be raised at the central system
 - The volume can not be reduced because it has been set to assure proper ventilation (contaminant control)

A Few More Definitions

Reheat

- In the limit, <u>at the most</u>:
 - Reheat will raise the supply temperature <u>to</u> the zone temperature but not <u>above</u> it

Addressing the HVAC Goals

Given that there are people in the space, we will need to provide some quantity of fresh outdoor air to control contaminants

Addressing the HVAC Goals

Given the nature of the climate and the loads, this air and any recirculated air will need to be cooled and dehumidified during warm, humid weather

How Buildings Use Heat

- Heating

 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓
- Cooling
- Processes
- Power Generation

- Heating
 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
- Processes
- Power Generation

Absorption Refrigeration

A cooling process that is driven by heat

Absorption Chiller

Absorption Chiller

A Heat Recovery Centrifugal Chiller

The chiller in the following slide has a second condenser tube bundle that is piped to the heating hot water system. This allows the hot gas off of the compressor to be used to generate hot water for reheat loads prior to having its heat rejected to the cooling tower via the traditional condenser.

- Heating
 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling ✓
- Processes
- Power Generation

- Heating
 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling ✓ Can be driven by heat
- Processes
- Power Generation

- Heating

 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
 Can move heat to where its needed
- Processes
- Power Generation

Humidification

- A process that adds moisture to the air
 - RH levels between 40 and 60 percent are optimum for comfort and disease prevention
 - The influenza virus has its highest mortality rate at 50% percent RH
 - Equipment may require specific humidity levels for optimum performance
 - Production may require specific humidity levels to maintain manufacturing tolerance

Indirect Steam Humidifier

Evaporative Cooler

Sterilization

- A process that makes something free from bacteria or other living microorganisms
 - Common in health care and laboratory applications

Domestic Hot Water

- Water that is intended for human consumption
 - Showers
 - Cleaning
 - Dishwashing
- Concerns regarding legionella dictate storage temperatures
- Concerns about scalding dictate distribution temperatures

Cooking

Applying heat to food

Image courtesy of https://www.pinterest.com/pin/541206080211952343/

- Heating

 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
 Can move heat to where its needed
- Processes ✓
- Power Generation

- Heating
 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
 Can move heat to where its needed
- Processes ✓ Some harder to address with a heat pump
- Power Generation

Power Generation

 A process that generates power by converting one form of energy into a different, more useful form for the task at hand

State	% of Total Electric Power Generation											Non-	Renewable	Combustion	Non-
		١	Non-Renewab	le			Renewable					renewable +	Percent of	Process	combustion
			Combustio	n Processes		Non-Combustion Processes						Nuclear	Total	Generated	Process
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
				Fuel	Fuel							Total		Total	Percent of
					Generated										Total
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
WY	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
U5	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

- The heat can come from burning things like coal

State	% of Total E										
		١	Jon-Renewabl	e							
			Combustion	Processes							
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass					
				Fuel	Fuel						
					Generated						
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%					
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%					
DE	DE 2.0% 0.2% 92.6%			2.8%	0.0%	1.4%					
HI	12.8% 67.8%		0.0%	0.0%	1.3%	5.0%					
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%					
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%					
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%					
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%					
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%					
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%					
WY	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%					
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%					
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%					
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%					

Power Generation

- The heat can come from burning things like coal, gas

State	% of Total E										
		1	Non-Renewabl	e							
			Combustion	Processes							
	Coal	Oil	Purchased,	Biomass							
				Fuel	Fuel						
					Generated						
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%					
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%					
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%					
HI	12.8%	67.8%	0.0%	0.0%	1.3%	5.0%					
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%					
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%					
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%					
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%					
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%					
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%					
WY	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%					
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%					
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%					
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%					

Power Generation

- The heat can come from burning things like coal, gas, oil

State	% of Total E										
		١	Jon-Renewabl	e							
			Combustion	Processes							
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass					
				Fuel	Fuel						
					Generated						
CA	0.2%	0.0%	47.7%	0.8%	0.3%	3.0%					
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%					
DE			92.6%	2.8%	0.0%	1.4%					
HI			0.0%	0.0%	1.3%	5.0%					
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%					
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%					
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%					
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%					
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%					
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%					
WY	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%					
Minimum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%					
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%					
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%					

Power Generation

 The heat can come from burning things like coal, gas, oil, or biomass ...

State	% of Total Electric										
		١	Non-Renewabl	e							
			Combustion	Processes							
	Coal	Oil	Gas	Other Fossil	Purchased,	Biomass					
				Fuel	Fuel						
					Generated						
CA	0.2% 0.0% 47.7%		0.8%	0.3%	3.0%						
DC	0.0%	0.0%	61.3%	0.0%	0.0%	31.4%					
DE	2.0%	0.2%	92.6%	2.8%	0.0%	1.4%					
HI	HI 12.8% 67.8%		0.0%	0.0%	1.3%	5.0%					
IA	23.7%	0.2%	11.8%	0.0%	0.0%	0.3%					
NH	0.8%	0.3%	22.3%	0.0%	0.0%	5.6%					
NV	4.8%	0.0%	66.3%	0.0%	0.1%	0.1%					
OR	2.6%	0.0%	29.9%	0.0%	0.0%	1.6%					
RI	16.8%	49.9%	30.9%	0.0%	0.0%	0.0%					
WA	0.0%	0.1%	0.1%	0.0%	0.0%	21.3%					
WY	88.6%	0.3%	4.9%	0.1%	0.0%	0.0%					
Minimum	um 0.0% 0.0%		0.0%	0.0%	0.0%	0.0%					
Maximum	88.6%	67.8%	93.0%	2.8%	1.3%	31.4%					
Average	19.8%	2.9%	36.2%	0.3%	0.1%	3.0%					
US	19.3%	0.7%	40.5%	0.3%	0.1%	1.5%					

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind

	Electric Power Generation										
	·		Renewable			Nuclear	renewable +	Percent of	Process	combustion	
			Non-Combust	ion Processe	s		Nuclear	Total	Generated	Process	
	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated	
	5						Total		Total	Percent of	
										Total	
	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%	
	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%	
	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%	
	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%	
	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%	
	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%	
	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%	
	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%	
	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%	
E	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%	
	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%	
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%	
	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%	
	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%	
	1.5%	7.0%	8.4%	2,2%	0.4%	19.6%	80.5%	19.5%	62,4%	37.6%	

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind

	Electric Power Generation										
			Renewable			Nuclear	renewable +	Percent of	Process	combustion	
	Non-Combustion Processes						Nuclear	Total	Generated	Process	
	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated	
							Total		Total	Percent of	
										Total	
	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%	
	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%	
	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%	
	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%	
	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%	
	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%	
	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%	
	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%	
	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%	
	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%	
	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%	
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%	
Constituting Comments and Comments of the Comm	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%	
	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%	
	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%	

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar

	Non-	Renewable	Combustion	Non-						
			Renewable			Nuclear	renewable +	+ Percent of	Process	combustion
		Non-Combustion Processes					Nuclear	Total	Generated	Process
	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
							Total		Total	Percent of
										Total
	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar

		Non-	Renewable	Combustion	Non-					
			Renewable			Nuclear	renewable +	Percent of	Process	combustion
	Non-Combustion Processes						Nuclear	Total	Generated	Process
	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
₩							Total		Total	Percent of
										Total
	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal

Electric Power	Generation					Non-	Renewable	Combustion	Non-
		Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combust	ion Processes	•		Nuclear	Total	Generated	Process
Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
						Total		Total	Percent of
									Total
3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

Power Generation

 - ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal, and nuclear energy

		Non-	Renewable	Combustion	Non-					
			Renewable			Nuclear	renewable +	Percent of	Process	combustion
		Non-Combustion Processes				Nuclear	Total	Generated	Process	
	Biomass	Hydro	Wind	Solar	Geothermal		Percent of		Percent of	Generated
							Total		Total	Percent of
										Total
	3.0%	11.0%	7.0%	15.7%	5.9%	8.4%	57.4%	42.6%	52.0%	48.0%
	31.4%	0.0%	0.0%	7.3%	0.0%	0.0%	61.3%	38.7%	92.7%	7.3%
	1.4%	0.0%	0.1%	1.0%	0.0%	0.0%	97.6%	2.5%	99.0%	1.1%
	5.0%	1.1%	6.4%	5.3%	0.1%	0.0%	81.9%	17.9%	86.9%	12.9%
	0.3%	1.7%	57.3%	0.0%	0.0%	4.9%	40.6%	59.3%	36.0%	63.9%
	5.6%	7.5%	3.2%	0.0%	0.0%	60.4%	83.8%	16.3%	29.0%	71.1%
	0.1%	4.8%	0.7%	13.7%	9.4%	0.0%	71.2%	28.7%	71.3%	28.6%
	1.6%	50.2%	13.8%	1.7%	0.3%	0.0%	32.5%	67.6%	34.1%	66.0%
	0.0%	0.0%	0.8%	1.6%	0.0%	0.0%	97.6%	2.4%	97.6%	2.4%
	21.3%	52.4%	17.8%	8.4%	0.0%	0.0%	0.2%	99.9%	21.5%	78.6%
	0.0%	2.8%	3.3%	0.0%	0.0%	0.0%	93.9%	6.1%	93.9%	6.1%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.4%	18.2%	1.1%
	31.4%	65.8%	57.3%	15.7%	9.4%	60.4%	97.6%	99.9%	99.0%	81.9%
	3.0%	10.2%	9.4%	2.3%	0.3%	15.4%	74.7%	25.3%	62.3%	37.7%
	1.5%	7.0%	8.4%	2.2%	0.4%	19.6%	80.5%	19.5%	62.4%	37.6%

- Heating
 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
 Can move heat to where its needed
- Processes ✓ Harder to address with a heat pump
- Power Generation

- Heating

 Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling
 Can move heat to where its needed
- Processes ✓ Harder to address with a heat pump

- Heating ✓ Core is rejecting heat when we need to do this
- Preheat ✓ Core is rejecting heat when we need to do this
- Reheat ✓ Core is rejecting heat when we need to do this
- Cooling

 Can move heat to where its needed
- Processes

 Harder to address with a heat pump
- Power Generation ✓ Heat pumps can leverage this

Application

- Heating ✓
- Preheat ✓
- Reheat ✓
- Cooling
- Processes ✓
- Power Generation ✓

Electrification Target

- ****
- ****
- V
- **V**

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels Good News

- Fairly simple
- High grade heat
- Fairly inexpensive

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels

Good News

- Fairly simple
- High grade heat
- Fairly inexpensive

Bad News

CO₂ Intensive

CO₂ Emissions for Different Fuels

Fuel	lb CO₂ per			Ib CO2 per	b CO ₂ per million Btu Delivered						
	million Btu	Boiler Efficiency									
	Burned	95%	90%	85%	80%	75%	70%	65%			
Natural Gas	117	123	130	137	146	156	167	179			
Propane	139	146	154	163	173	185	198	213			
Oil	163	172	182	192	204	218	234	251			
Coal	212	223	235	249	265	282	303	326			
Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php											

The Goal

Stop burning fossil fuels by switching to an all-electric grid powered by renewable resources

Electrification and the Already All-Electric Building

I have 300 kW of electric resistance heat, and the energy it uses is a major portion of our utility bills. And yet the building is cold!

Gary Walters, Chief Engineer

The Challenges

1. Currently about 60-63% of our electricity is generated by burning something

The Challenges

2. Heat rates (efficiencies) for our power plants are not particularly high ...

10,446

Heat Rates for Different Types of Power Plants

Generating Station Type

Nuclear Power Plant

Heat Rate Source -

	Minimum		Max	imum	lb CO₂ per	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu		
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40

10,459

33%

Emissions

Ib CO₂ per kWh Generated

0.00

0.00

Typical Heat Rate

33%

Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php

https://energyknowledgebase.com/topics/heat-rate.asp

Heat rates (efficiencies) for our power plants are not particularly high and CO2 emissions potentially would not be much different

Heat Rates for Different Types of Power Plants

Generating Station Type		Typical F	Emissions	lb CO₂ per k\	Wh Generated						
	Minimum		Maximum		lb CO₂ per	Minimum	Maximum				
	Btu/kWh	Efficiency	Btu/kWh	Efficiency	million Btu						
Natural Gas with Cogeneration	5,000	68%	6,500	53%	117	0.58	0.76				
Natural Gas Combined Cycle	6,200	55%	8,000	43%	117	0.72	0.93				
Natural Gas Reciprocating Engine	7,500	46%	8,500	40%	117	0.87	0.99				
Natural Gas Combustion Turbine	8,000	43%	10,000	34%	117	0.93	1.17				
Coal Steam Turbine	9,000	38%	11,000	31%	212	1.91	2.33				
Natural Gas Steam Turbine	10,000	34%	12,000	28%	117	1.17	1.40				
Nuclear Power Plant	10,446	33%	10,459	33%	0	0.00	0.00				
Heat Rate Source -	https://energyk										

CO₂ Emissions for Different Fuels

Fuel	lb <i>CO</i> ₂ per		lb CC	lb CO ₂ per Million Btu					
	million Btu			Delivered as Electric					
	Burned	95%	90%	85%	80%	75%	70%	65%	Resistance Heat *
Natural Gas	117	123	130	137	146	156	167	179	
Propane	139	146	154	163	173	185	198	213	214
Oil	163	172	182	192	204	218	234	251	214
Coal	212	223	235	249	265	282	303	326	

Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2_vol_mass.php Heat Rate Source - "Heat Rates" tab of this spreadsheet

^{*} This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab

Recall That:

 Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location

Recall That:

- Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location
- The COP (Coefficient of Performance) defines how much energy they need to spend relative to the energy they move
- COPs can be easily be 3 or higher

Coefficient of performance for a heat pump

$$COP_{Heating} = \frac{Q_{Hea}}{W_{In}}$$

or, solving for QHeat

$$Q_{Heat} = COP_{Heating} \times W_{In}$$

Where:

$$COP_{Heating} = Coefficient of performance as a heat pump \ Q_{Heat} = The heat delivered to the area served in consistent units, which is the heat rejected by the heat pump \ W_{In} = The work done to deliver the heat in$$

consistent units

As a Result:

CO₂ Emissions for Different Fuels

Fuel	lb <i>CO</i> ₂ per million Btu		IЬ СС		o <mark>n Btu Deli</mark> iler Efficier		lb CO₂ per Million Btu Delivered as Electric	lb CO2 per Million Btu Delivered by a Heat Pump			
	Burned	95%	90%	85%	80%	75%	70%	65%	Resistance Heat *	with a COP of 3.7*	
Natural Gas	117	123	130	137	146	156	167	179			
Propane	139	146	154	163	173	185	198	213	214	01	
Oil	163	172	182	192	204	218	234	251	214	91	
Coal	212	223	235	249	265	282	303	326			

Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php

Heat Rate Source - "Heat Rates" tab of this spreadsheet

^{*} This is the average value for the various fossil fuel power plants listed in the "Heat Rates" tab

Learning More

If you are intrigued, the PEC will be offering a 5 part (half day per part) class on Commissioning Heat Pumps in May of 2024

- 1. Heat pump fundamentals and system types
- 2. Integrating ventilation with heat pumps
- 3. Heat pumps in new construction
- 4. Heat pumps in existing buildings
- 5. The Already All Electric Building

Reducing Atmospheric Impacts

We expect our energy mix to be 70% carbon free by 2040 based on current commitments and mandates, and we're working to deliver the right resources and technologies to make that happen

Energy Strategy; www.portlandgeneral.com

Reducing Atmospheric Impacts

Moving away from carbon fuels is a common, long-term goal for many utilities

Reducing Atmospheric Impacts

- Applying the commissioning tool set can have an immediate impact by reducing the need for energy in the first place
- Using heat pumps to leverage the electricity we use to create heat makes best use of the electricity consumed to create heat

It's a win-win situation

Application

- Heating ✓
- Preheat ✓
- Reheat
- Cooling ✓
- Processes
- Power Generation

Electrification Target

√

/

√

Heat Pump Target

*

^{*} Some are easier to serve with a heat pump than others

Application

- Heating ✓
- Preheat ✓
- Reheat ✓
- Cooling ✓
- Processes ✓
- Power Generation

Electrification Target

- ****
- **√**
- **√**
- **√**
- ****

Heat Pump Target

- ****
- **√**
- **√**
- **√**
- •

Conservation/ EBCx Target

- ****
- ****
- **√**
- **√**
- **/**

Power Generation

Heat pumps and best practices in terms of ongong commissioning use our power to best advantage

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
 - Domestic Hot Water
 - Humidification
 - Cooling
 - Sterilization

- Preheat Ventilation Air
- 50°F 75°F

- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

- Preheat Ventilation Air
- Reheat
- Space Heat
 - Radiant slabs
 - Air
 - Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

50°F - 75°F

50°F - 75°F

Preheat Ventilation Air

50°F - 75°F

Reheat

50°F - 75°F

Space Heat

80°F - 85°F

Radiant slabs

95°F - 110°F

Air

120°F – 220°F

Finned tube radiation

Drive Processes

- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

Preheat Ventilation Air 50°F - 75°F

• Reheat 50°F - 75°F

Space Heat

• Radiant slabs 80°F - 85°F

• Air 95°F - 110°F

• Finned tube radiation 120°F – 220°F

Drive Processes

Domestic Hot Water 120°F – 140°F or higher

Humidification
 212°F or higher

Cooling
 212°F or higher; hotter is better

Sterilization 300°F or higher

Low Grade

				1 \				Λ : .	
•	Н	're	neai		ent	IIAI	ion /	Δ I $^{\prime}$	ı
)		LV		II a t		\	

50°F - 75°F

Reheat

50°F - 75°F

Space Heat

80°F - 85°F

Radiant slabs

95°F - 110°F

Air

120°F – 220°F

Finned tube radiation

Drive Processes

Domestic Hot Water

120°F – 140°F or higher

Humidification

212°F or higher

Cooling

212°F or higher; hotter is better

Sterilization

300°F or higher

High Grade

A Preheat Coil Can Do Its Thing with 100°F Water or Less (i.e. Lower Grade Heat)

https://tinyurl.com/GreenheckCoilSelection

https://tinyurl.com/LowTempHW

A Reheat Coil Selected for Space Heating Can Do Reheat With Much Cooler Water (i.e. Lower Grade Heat)

https://tinyurl.com/GreenheckCoilSelection

https://tinyurl.com/LowTempHW

Questions?

