

How Water and Steam Systems; Basic Principles, Ongoing Commissioning, Operation, and Optimization
Please Visit This Link While We Are Waiting to Begin https://tinyurl.com/Lcl39SteamHHWD1Intro

Presented By:

David Sellers
Senior Engineer, Facility Dynamics Engineering

Disclaimer

- The information in this document is believed to accurately describe the technologies described herein and are meant to clarify and illustrate typical situations, which must be appropriately adapted to individual circumstances. These materials were prepared to be used in conjunction with a free, educational program and are not intended to provide legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas and Electric Company (PG\&E) nor any of its employees and agents:
- Makes any written or oral warranty, expressed or implied, including, but not limited to, those concerning merchantability or fitness for a particular purpose;
- Assumes any legal liability or responsibility for the accuracy or completeness of any information, apparatus, product, process, method, or policy contained herein; or
- Represents that its use would not infringe any privately owned rights, including, but not limited to, patents, trademarks, or copyrights.

Copyright Materials

Some or all of this presentation may be protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the copyright holder is prohibited

Learning Objectives

Attendees will be able to:

1. Define How Heat is Generated, Distributed and Transferred in Buildings and How Buildings Use Heat
2. Recognize Key Differences Between Steam and Hot Water Systems
3. Describe the Different Types of Heating Processes Used in Buildings
4. Identify Opportunities to Improve Performance and Save Energy with HHW and Steam Systems.

Agenda

1. Introduction
2. How Buildings Use Heat
3. Steam Systems

Introductions
ρ_{0}
囲
囲

4
 In

T
\square
Introcuctions
\square
Introductions
 ，
\rightarrow
．

$+$
Introcuctions
\square ？

 Tor
Qutancons

\qquad正 \square

Introductions

A Bit About Me

I intended to be an aircraft maintenance engineer

A Bit About Me

I intended to be an aircraft maintenance engineer

- I'm doing something totally different

A Bit About Me

I'm doing something totally different

- HVAC field technician

A Bit About Me

- HVAC field technician
- Control system designer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- PECI technical support engineer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer and trainer

A Bit About Me

- HVAC field technician
- Control system designer
- HVAC designer
- MCC Powers system engineer
- Murphy Company controls and start-up engineer
- Project engineer
- Wafer fab facilities engineer and system owner
- A happily married PECI technical support engineer and trainer
- FDE Senior Engineer

I've Had Great Mentors Along the Way

Bill Coad's Thoughts on Energy Conservation

"... that is to practice our profession with an emphasis upon our responsibility to protect the long-range interests of the society we serve and, specifically, to incorporate the ethics of energy conservation and environmental preservation in everything we do."

Energy Conservation is an Ethic
ASHRAE Journal, vol. 42, no. 7, p. 16-21

PDF available at
https://tinyurl.com/EnergyConservationEthic

A Few Resources

(1) History
\square Your videos
(3) Watch later

16 Liked videos
\checkmark Show more

SUBSCRIPTIONSThe Engineering Min...SketchUpTheSketchUpEsse...
RAOBprogram
GuitarLessons365...
Mitchell Paulus
K Kathy Sellers
$\checkmark \quad$ Show 9 more

MORE FROM YOUTUBEYouTube Premium

RCX ROI Calcs
VIEW FULL PLAYLIST

RCX Benchmarking
VIEW FULL PLAYLIST

HVAC Fundamentals: Air-side Systems

VIEW FULL PLAYLIST

RCX Data Analysis VIEW FULL PLAYLIST

HVAC Fundamentals: Heating \& Cooling Equipment
VIEW FULL PLAYLIST VIEW FULL PLAYLIST
VIEW FULL PLAYLIST
VIEW FULL PLAYLIST

https://tinyurl.com/RCxUniversity

A Resource List Built Around the 10 Skills

https://tinyurl.com/CxResourceList

Resource List

The list is organized by the ten key technical skills we thing are important for anyone who wants to work in the commissioning and building operations fields. If you want to know what we think those skills are and why, just click here.

If you turn on the bookmarks in the .pdf document (typically, you can do that by clicking on the little ribbon shaped icon on the left side of the Acrobat window), you will links that will let you easily and quickly move around in the document. The document also includes a description of how to navigate through it in a section that starts on page 2.

We try to update the document every year or so, adding new things we have found, removing items that are obsolete, and verifying to the extent possible that the links all work. So, you may want to check back every once-in-a-while to see if there is a newer version or if a link in your version no longer works.

If you discover a link that is not working or have a resource you want to suggest we add to the list, let us know and we will check into it.
$\left\{\begin{array}{l}\text { Facility Dynamic } \\ \text { Enainezana }\end{array}\right.$ \square Nomin Resources and Reading List


```
Overview
```



```
Masmen
```



```
*)
```



```
IN
ata petyy fatt pace.
```



```
Masmen
```



```
Moout the smmes level inemmsort bode
```



```
*)
*)
```


The EBCx Skills Guidebook is Built Around the 10 Skills

Existing Building Commissioning Skills Guidebook

The guidebook is organized using the 10 Key Commissioning Skills as a framework and provides:

- A description and example of why the skill is important;
- Learning objectives to help guide a self study effort;
- Links to primary resources that can be used to learn about the skill in a self study effort;
- Links to secondary resources that can be used to dig in deeper if you have a particular interest in a particular topic.
The 10 Skills Learning Objectives Checklist is intended to complement the guidebook by providing a list of all of the learning objectives with a check-box that allows you to track your progress as you work your way through the guidebook in a self study effort.

A

EBCx Skills Guidebook (ebcx_technical_skills_guidebook_v2017-07-07_web.pdf) Download File10 Skills Learning Objectives Checklist (skills_table_web_v5.xlsx)
Download File

How to Design
Heating－Cooling
ComfortSystems
Joseph B Oiviveri，PE．

A Field Perspective on Engineering

Creating a Third Axis In Excel

Posted on April 19, 2019
One of the challenges that came up when I was creating the time series graph of a 9,000 ton chiller plant load profile that I show in my previous post was that I wanted to plot data series that had numbers in them with very large differences in the order of magnitude.

Click the Image to Visit Our Commissioning Resources Website

Subscribe to A Field Perspective on Engineering - RSS - Posts

Archives

Select Month

© Brother Placid Sellers; Saint Vincent Archabbey, Latrobe, Pennsylvania
. Buildings are Talking to Us
We Just Need to Learn How to Listen

My Goal
Welcome to A Field Perspective on Engineering's commissioning resource website. For those who don't know me from my blog or some other venue, am a senior engineer for a company named Facility Dynamics Engineering a.k.a FDE, which specializes in commissioning, control system design, and some forensic engineering work.

$$
1
$$

ㅁa

$N / 2$ 3 3

 0

 \section*{Loads and Load Profiles 20 20 20

 2

 2

 2

 -}

 -}

 -}

 -}

\square
\qquad

 - \(\square\)

My Most Important Lesson

It's all about the load profile

My Most Important Lesson

It's all about the load profile, both daily and seasonal

The Built Environment

What

 5in

The Built Environment

- Keeping the built environment safe, productive, clean, and comfortable is a fundamental goal of HVAC systems and their controls
- Ventilation systems control contaminants by introducing filtered, conditioned outdoor air
- Heating and cooling systems track the loads to control comfort

The Built Environment

Internal Gains = Heat Recovery Potential

The current drive towards electrification and heat pumps may make the internal gains we threw away with an economizer cycle a resource for offsetting perimeter loads

Internal Gains = Heat Recovery Potential

For many facilities the electrical consumption expressed as Btus equals or exceeds the thermal consumption

Annual Building Energy Consumption Totals

Facility Description	Annual Site Thermal, kBtu	Annual Site Electric, kBtu	Thermal vs. Electric Difference	
			kBtu (Positive means thermal exceeds electrical)	\% of thermal met by electrical when electrical converted to heat
Monterey, California Office/Training Facility	1,299,800	1,245,199	54,601	96\%
Monterey, California Dental Clinic	402,149,182	650,914,664	-248,765,482	162\%
Seattle High-rise Office and Courthouse	589,732,280	938,067,784	-348,335,504	159\%
Columbus Ohio Full Service High Rise Hospitality Facility	36,513,882,901	22,107,926,113	14,405,956,788	61\%
San Francisco California Full Service High Rise Hospitality Facility	18,507,084,000	20,176,973,400	-1,669,889,400	109\%

$$
4
$$

ㅁㅁ

\section*{| $31 /$ |
| :--- |
| $3 / 15$ |}

$\square \square$

 ．

 ．

 }

 \section*{How Buildings Use Heat

 \section*{How Buildings Use Heat

 \section*{How Buildings Use Heat

 五

 五

 \square

 \square

 －}
\square
 \qquad 1
\qquad

\qquad
\qquad

4
．

 \square （

How Buildings Use Heat

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Revisiting a Definition

Heating

- A process that adds energy
- For a space, this is often accomplished by circulating air through it at a temperature above the required set point
- For a fluid stream, this is often accomplished by passing it over a surface that is above the required supply temperature

A Few More Definitions

Ventilation

- Outdoor air that is brought into the building to manage contaminates, generally by dilution
- The outdoor air volume is dictated by:
- Type of contaminant
- Capture velocity
- Occupant count
- Code requirements
- ASHRAE Standard 62.1 is usually the basis for design
- Ventilation air typically is removed by exhaust systems

Keeping Things Safe by Controlling Contaminants

- Can be quite challenging as the climate varies from day to day

- Can be quite challenging as the climate varies from day to day

prs:

PSYCHROMETRIC CHART

NORMAL TE MPERATURE
$1-P$ Units
20 FEET
BAROMETRIC PRESSURE: 29.900 INCHES OF MERCURY

Keeping Things Safe by Controlling Contaminants

- Can be quite challenging as the climate varies from day to day
- Becomes more challenging when outdoor air is below $32^{\circ} \mathrm{F}$

A Few More Definitions

Freezing

- A condition that occurs when water is cooled to the point where it changes phase from a solid to a liquid

A Few More Definitions

Water Damage

- A condition that occurs after frozen water contained in a HVAC coil changes back to the liquid phase

A Few More Definitions

Expletive

- A generic reference to the field terminology used to describe and discuss water damage when it occurs

A Few More Definitions

Significant Emotional Event

- An event that has life-changing emotions associated with it
- Triggering conditions:
- Flurry of expletives
- Lawsuits
- Freezing a coil is an example

How Buildings Use Heat

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Preheat

- A process that heats a fluid stream to prepare it for a subsequent HVAC process
- In air handling systems, this process is used to raise subfreezing air above freezing to protect water filled elements down stream from damage due to freezing

See the Functional Testing Guide (https://www.av8rdas.com/functional-testing-quide.html) Air Handling System Reference Guide Chapter 5 - Preheat, Table 5.1 to contrast preheat, reheat and heating applications

Face and Bypass Damper Control

- Coil discharge temperature regulation strategy

Face and Bypass Damper Control

- Coil discharge temperature regulation by mixing air that passes through the coil

Face and Bypass Damper Control

- Coil discharge temperature regulation by mixing air that passes through the coil with air that bypasses the coil

Face and Bypass Damper Control

- Coil discharge temperature regulation by mixing air that passes through the coil with air that bypasses the coil

Why Face and Bypass

Flow remains steady in the steam/water side of the coil

- Keeps the coil face active
- Ensures dehumidification for cooling and dehumidification applications
- Ensures freeze protection for preheat applications
- Moving water is less likely to freeze
- Compatible with water systems requiring constant flow

Face Damper (Covers the Heating Coil Face)

The Traditional Approach

Integral Face and Bypass

- "Wing" coil
- Targeted at preheat applications
- Ensures steam coils will not freeze

An
Alternative
Approach

Integral Face and Bypass

- Horizontal supply and return headers are located out of the air stream

Integral Face and Bypass

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream

Integral Face and Bypass

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements

Integral Face and Bypass

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements
- "Clam shell" dampers around finned tubes direct air around the tubes ...

Integral Face and Bypass

- Horizontal supply and return headers are located out of the air stream
- Vertical tubes connect headers and ensure condensate drains out of the air stream
- Fins make tubes heat transfer elements
- "Clam shell" dampers around finned tubes direct air around the tubes ...
... or through
the tubes

Integral Face and Bypass

Control Considerations

- Damper sizing is critical for linear control response
- Low velocity required at the coil face to minimize coil pressure drop and carry over
- Deep coils have high pressure drops
- The bypass side needs to be sized for the combined pressure drop of the coil and face damper

Control Considerations

- Water/steam side is typically on or off
- Temperature control achieved via damper modulation
- Hot water and steam coils can see significant temperature rises in full bypass
- $4^{\circ} \mathrm{F}$ or more
- Parasitic load
- Shut down heat source when its not needed

Constant Volume Pumped Hot Water Preheat Coil

Preheat Bottom Lines

- Just because a coil is piped to hot water or steam does not mean it can safely deal with subfreezing air
- Freeze protection and sensing elements need to be installed to reflect/compensate for:
- Non-uniform flow conditions
- Temperature stratification
- The control system can not compensate for equipment that is not configured and piped to handle sub-freezing air
- The control system will be the first thing blamed if a coil freezes

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this - Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat
- Cooling
- Processes
- Power Generation

A Few More Definitions

Reheat

- A process that uses heat to warm air being delivered to a zone to prevent over cooling
- The temperature of the air was set by the need to hit a dehumidification target, or
- By the requirements of another zone
- Thus, it can not be raised at the central system
- The volume can not be reduced because it has been set to assure proper ventilation (contaminant control)

A Few More Definitions

Reheat

- In the limit, at the most:
- Reheat will raise the supply temperature to the zone temperature but not above it

Addressing the HVAC Goals

Given that there are people in the space, we will need to provide some quantity of fresh outdoor air to control contaminants

Addressing the HVAC Goals

Given the nature of the climate and the loads, this air and any recirculated air will need to be cooled and dehumidified during warm, humid weather

ALTITUDE: 7 FEET
BAROMETRIC PRES SURE: 29.915 in . HG
ATMOSPHERIC PRESSURE: 14.693 psia

ALTITUDE: 7 FEET
BAROMETRIC PRESSURE: 29.915 in . HG

Outdoor air in this area will need dehumidification Weander Dom Loction
SAN_mANCISCO_NTLAP, CALFORNA, USA

.

ALTITUDE: 7 FEET
BAROMETRIC PRESSURE: 29.915 in . HG
${ }_{\infty}^{\text {ATMOSPHERIC PRESSURE: } 14.693}{ }^{1.0}{ }^{1.0}$
$]_{\frac{10}{10}}^{0.8}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
$\underset{\infty}{\text { ATMO SPHERIC PRESSURE: } 14.696}{ }_{[10}^{\text {psia }}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRES SURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia ${ }_{1.0}$

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROME TRIC PRES SURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia

ALTITUDE: SEA LEVEL
BAROMETRIC PRESSURE: 29.921 in . HG
ATMOSPHERIC PRESSURE: 14.696 psia
(2000

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this - Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling
- Processes
- Power Generation

A Few More Definitions

Absorption Refrigeration

- A cooling process that is driven by heat

Absorption Chiller

Absorption Chiller

A Heat Recovery Centrifugal Chiller

The chiller in the following slide has a second condenser tube bundle that is piped to the heating hot water system. This allows the hot gas off of the compressor to be used to generate hot water for reheat loads prior to having its heat rejected to the cooling tower via the traditional condenser.

Compressor

Hot gas valve and piping condenser

Traditional condenser

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can be driven by heat
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes
- Power Generation

A Few More Definitions

Humidification

- A process that adds moisture to the air
- RH levels between 40 and 60 percent are optimum for comfort and disease prevention
- The influenza virus has its highest mortality rate at 50\% percent RH
- Equipment may require specific humidity levels for optimum performance
- Production may require specific humidity levels to maintain manufacturing tolerance

Indirect Steam Humidifier

Evaporative Cooler

A Few More Definitions

Sterilization

- A process that makes something free from bacteria or other living microorganisms
- Common in health care and laboratory applications

A Few More Definitions

Domestic Hot Water

- Water that is intended for human consumption
- Showers
- Cleaning
- Dishwashing
- Concerns regarding legionella dictate storage temperatures
- Concerns about scalding dictate distribution temperatures

A Few More Definitions

Cooking

- Applying heat to food

Image courtesy of
https://www.pinterest.com/pin/541206080211952343/

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Some harder to address with a heat pump
- Power Generation

A Few More Definitions

Power Generation

- A process that generates power by converting one form of energy into a different, more useful form for the task at hand

State	\% of Total Electric Power Generation											Nonrenewable + Nuclear Percent of Total	Renewable Percent of Total	Combustion Process Generated Percent of Total	Noncombustion Process Generated Percent of Total
	Non-Renewable						Renewable Non-Combustion Processes				Nuclear				
	Combustion Processes														
	Coal	Oil	Gas	Other Fossil Fuel	Purchased, Fuel Generated	Biomass	Hydro	Wind	Solar	Geothermal					
CA	0.2\%	0.0\%	47.7\%	0.8\%	0.3\%	3.0\%	11.0\%	7.0\%	15.7\%	5.9\%	8.4\%	57.4\%	42.6\%	52.0\%	48.0\%
DC	0.0\%	0.0\%	61.3\%	0.0\%	0.0\%	31.4\%	0.0\%	0.0\%	7.3\%	0.0\%	0.0\%	61.3\%	38.7\%	92.7\%	7.3\%
DE	2.0\%	0.2\%	92.6\%	2.8\%	0.0\%	1.4\%	0.0\%	0.1\%	1.0\%	0.0\%	0.0\%	97.6\%	2.5\%	99.0\%	1.1\%
HI	12.8\%	67.8\%	0.0\%	0.0\%	1.3\%	5.0\%	1.1\%	6.4\%	5.3\%	0.1\%	0.0\%	81.9\%	17.9\%	86.9\%	12.9\%
IA	23.7\%	0.2\%	11.8\%	0.0\%	0.0\%	0.3\%	1.7\%	57.3\%	0.0\%	0.0\%	4.9\%	40.6\%	59.3\%	36.0\%	63.9\%
NH	0.8\%	0.3\%	22.3\%	0.0\%	0.0\%	5.6\%	7.5\%	3.2\%	0.0\%	0.0\%	60.4\%	83.8\%	16.3\%	29.0\%	71.1\%
NV	4.8\%	0.0\%	66.3\%	0.0\%	0.1\%	0.1\%	4.8\%	0.7\%	13.7\%	9.4\%	0.0\%	71.2\%	28.7\%	71.3\%	28.6\%
OR	2.6\%	0.0\%	29.9\%	0.0\%	0.0\%	1.6\%	50.2\%	13.8\%	1.7\%	0.3\%	0.0\%	32.5\%	67.6\%	34.1\%	66.0\%
RI	16.8\%	49.9\%	30.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.8\%	1.6\%	0.0\%	0.0\%	97.6\%	2.4\%	97.6\%	2.4\%
WA	0.0\%	0.1\%	0.1\%			21.3\%	52.4\%	17.8\%	8.4\%	0.0\%	0.0\%	0.2\%		21.5\%	78.6\%
WY	88.6\%	0.3\%	4.9\%	0.1\%	0.0\%	0.0\%	2.8\%	3.3\%	0.0\%	0.0\%	0.0\%	93.9\%	6.1\%	93.9\%	6.1\%
Minimum	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	2.4\%	18.2\%	1.1\%
Maximum	88.6\%	67.8\%	93.0\%	2.8\%	1.3\%	31.4\%	65.8\%	57.3\%	15.7\%	9.4\%	60.4\%	97.6\%	99.9\%	99.0\%	81.9\%
Average	19.8\%	2.9\%	36.2\%	0.3\%	0.1\%	3.0\%	10.2\%	9.4\%	2.3\%	0.3\%	15.4\%	74.7\%	25.3\%	62.3\%	37.7\%
US	19.3\%	0.7\%	40.5\%	0.3\%	0.1\%	1.5\%	7.0\%	8.4\%	2.2\%	0.4\%	19.6\%	80.5\%	19.5\%	62.4\%	37.6\%

A Few More Definitions

Power Generation

- The heat can come from burning things like coal

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas, oil

A Few More Definitions

Power Generation

- The heat can come from burning things like coal, gas, oil, or biomass ...

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal

A Few More Definitions

Power Generation

- ... or it can come non-combustion process-based sources like hydro, wind, solar, geothermal, and nuclear energy

	Electric Power Generation						Nonrenewable + Nuclear Percent of Total	Renewable Percent of Total	Combustion Process Generated Percent of Total	Non-
		Renewable Non-Combustion Processes				Nuclear				combustion Process
	Biomass	Hydro	Wind	Solar	Geothermal					Generated Percent of Total
	3.0\%	11.0\%	7.0\%	15.7\%	5.9\%	8.4\%	57.4\%	42.6\%	52.0\%	48.0\%
	31.4\%	0.0\%	0.0\%	7.3\%	0.0\%	0.0\%	61.3\%	38.7\%	92.7\%	7.3\%
	1.4\%	0.0\%	0.1\%	1.0\%	0.0\%	0.0\%	97.6\%	2.5\%	99.0\%	1.1\%
	5.0\%	1.1\%	6.4\%	5.3\%	0.1\%	0.0\%	81.9\%	17.9\%	86.9\%	12.9\%
	0.3\%	1.7\%	57.3\%	0.0\%	0.0\%	4.9\%	40.6\%	59.3\%	36.0\%	63.9\%
	5.6\%	7.5\%	3.2\%	0.0\%	0.0\%	60.4\%	83.8\%	16.3\%	29.0\%	71.1\%
	0.1\%	4.8\%	0.7\%	13.7\%	9.4\%	0.0\%	71.2\%	28.7\%	71.3\%	28.6\%
	1.6\%	50.2\%	13.8\%	1.7\%	0.3\%	0.0\%	32.5\%	67.6\%	34.1\%	66.0\%
	0.0\%	0.0\%	0.8\%	1.6\%	0.0\%	0.0\%	97.6\%	2.4\%	97.6\%	2.4\%
	21.3\%	52.4\%	17.8\%	8.4\%	0.0\%	0.0\%	0.2\%	99.9\%	21.5\%	78.6\%
	0.0\%	2.8\%	3.3\%	0.0\%	0.0\%	0.0\%	93.9\%	6.1\%	93.9\%	6.1\%
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	2.4\%	18.2\%	1.1\%
	31.4\%	65.8\%	57.3\%	15.7\%	9.4\%	60.4\%	97.6\%	99.9\%	99.0\%	81.9\%
	3.0\%	10.2\%	9.4\%	2.3\%	0.3\%	15.4\%	74.7\%	25.3\%	62.3\%	37.7\%
	1.5\%	7.0\%	8.4\%	2.2\%	0.4\%	19.6\%	80.5\%	19.5\%	62.4\%	37.6\%

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation \checkmark Behind the internal gains in a building

How Buildings Use Heat

- Heating \checkmark Core is rejecting heat when we need to do this
- Preheat \checkmark Core is rejecting heat when we need to do this
- Reheat \checkmark Core is rejecting heat when we need to do this
- Cooling \checkmark Can move heat to where its needed
- Processes \checkmark Harder to address with a heat pump
- Power Generation \checkmark Heat pumps can leverage this

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Electrification

Target

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels Good News

- Fairly simple
- High grade heat
- Fairly inexpensive

Why Electrification?

The traditional approach to generating heat has been to burn fossil fuels
Good News

- Fairly simple
- High grade heat
- Fairly inexpensive
CO_{2} Emissions for Different Fuels

Fuel	lb CO_{2} per million Btu Burned	lb CO_{2} per million Btu Delivered						
		Boiler Efficiency						
		95\%	90\%	85\%	80\%	75\%	70\%	65\%
Natural Gas	117	123	130	137	146	156	167	179
Propane	139	146	154	163	173	185	198	213
Oil	163	172	182	192	204	218	234	251
Coal	212	223	235	249	265	282	303	326
Emmis	actor Source	ps://	ia.90	ronm	issio	vol		

The Goal

Stop burning fossil fuels by switching to an all-electric grid powered by renewable resources

Electrification and the Already All-Electric Building

I have 300 kW of electric resistance heat, and the energy it uses is a major portion of our utility bills. And yet the building is cold!

Gary Walters, Chief Engineer

The Challenges

1. Currently about 60-63\% of our electricity is generated by burning something

The Challenges

2. Heat rates (efficiencies) for

 our power plants are not particularly high ...
Heat Rates for Different Types of Power Plants

Generating Station Type	Typical Heat Rate				Emissions	$\mathrm{lb} \mathrm{CO}_{2}$ per kWh Generated	
	Minimum		Maximum		$\mathrm{lb}_{\mathrm{CO}}^{2}$ per million $\mathrm{B}+u$	Minimum	Maximum
	Btu/kWh	Efficiency	Btu/kWh	Efficiency			
Natural Gas with Cogeneration	5,000	68\%	6,500	53\%	117	0.58	0.76
Natural Gas Combined Cycle	6,200	55\%	8,000	43\%	117	0.72	0.93
Natural Gas Reciprocating Engine	7,500	46\%	8,500	40\%	117	0.87	0.99
Natural Gas Combustion Turbine	8,000	43\%	10,000	34\%	117	0.93	1.17
Coal Steam Turbine	9,000	38\%	11,000	31\%	212	1.91	2.33
Natural Gas Steam Turbine	10,000	34\%	12,000	28\%	117	1.17	1.40
Nuclear Power Plant	10,446	33\%	10,459	33\%	0	0.00	0.00
Heat Rate Source - https://energyknowledgebase.com/topics/heat-rate.asp Emmissions Factor Source - https://www.eia.gov/environment/emissions/co2 vol mass.php							

2. Heat rates (efficiencies) for our power plants are not particularly high and CO2 emissions potentially would not be much different
Heat Rates for Different Types of Power Plants

Generating Station Type

Recall That:

- Heat pumps don't create energy; they use energy to move
energy from a Cold Location to a Hot Location

Recall That:

- Heat pumps don't create energy; they use energy to move energy from a Cold Location to a Hot Location
- The COP (Coefficient of Performance) defines how much energy they need to spend relative to the energy they move
- COPs can be easily be 3 or higher

Coefficient of performance for a heat pump

$$
\operatorname{COP}_{\text {Heating }}=\frac{Q_{\text {Heat }}}{W_{I n}}
$$

or, solving for $Q_{\text {Heat }}$
$Q_{\text {Heat }}=$ COP $_{\text {Heating }} \times W_{\text {In }}$
Where:

COP Heating $=$ Coefficient of performance as a heat pump
$Q_{\text {Heat }}=$ The heat delivered to the area served in consistent units, which is the heat rejected by the heat pump
$W_{\text {In }} \quad=$ The work done to deliver the heat in consistent units

As a Result:

CO_{2} Emissions for Different Fuels

Fuel	Ib CO_{2} per million Btu Burned	lb CO_{2} per million Btu Delivered by Boilers						
		Boiler Efficiency						
		95\%	90\%	85\%	80\%	75\%	70\%	65\%
Natural Gas	117	123	130	137	146	156	167	179
Propane	139	146	154	163	173	185	198	213
Oil	163	172	182	192	204	218	234	251
Coal	212	223	235	249	265	282	303	326

Ib CO_{2} per Million Btu Delivered as Electric Resistance Heat *

Learning More

If you are intrigued, the PEC will be offering a 5 part (half day per part) class on Commissioning Heat Pumps in May of 2024

1. Heat pump fundamentals and system types
2. Integrating ventilation with heat pumps
3. Heat pumps in new construction
4. Heat pumps in existing buildings
5. The Already All Electric Building

Reducing Atmospheric Impacts

We expect our energy mix to be 70\% carbon free by 2040 based on current commitments and mandates, and we're working to deliver the right resources and technologies to make that happen

Energy Strategy; www.portlandgeneral.com

Integrated Resource Planning

Preparing for Oregon's energy future

Reducing Atmospheric Impacts

Moving away from carbon fuels is a common, long-term goal for many utilities

XYZ Power Company Generating Mix

Reducing Atmospheric Impacts

- Applying the commissioning tool set can have an immediate impact by reducing the need for energy in the first place
- Using heat pumps to leverage the electricity we use to create heat makes best use of the electricity consumed to create heat

It's a win-win situation

XYZ Power Company Generating Mix

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation
* Some are easier to serve with a heat pump than others

How Buildings Use Heat

Application

Electrification
Target

Heat Pump
Target

Conservation/ EBCx Target

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

How Buildings Use Heat

Application

- Heating
- Preheat
- Reheat
- Cooling
- Processes
- Power Generation

Electrification Target

Heat Pump
Target

Heat pumps and best practices in terms of ongong commissioning use our power to best advantage

How Buildings Use Heat - An Example

How Buildings Use Heat - An Example

How Buildings Use Heat - An Example

- Preheat Ventilation Air
- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification

- Cooling
- Sterilization

How Buildings Use Heat - An Example

- Preheat Ventilation Air

$$
50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}
$$

- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

How Buildings Use Heat - An Example

- Preheat Ventilation Air
- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

$$
\begin{aligned}
& 50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F} \\
& 50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}
\end{aligned}
$$

How Buildings Use Heat - An Example

- Preheat Ventilation Air
- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization

$$
\begin{aligned}
& 50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F} \\
& 50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}
\end{aligned}
$$

$$
80^{\circ} \mathrm{F}-85^{\circ} \mathrm{F}
$$

$$
95^{\circ} \mathrm{F}-110^{\circ} \mathrm{F}
$$

$$
120^{\circ} \mathrm{F}-220^{\circ} \mathrm{F}
$$

How Buildings Use Heat - An Example

- Preheat Ventilation Air
- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization
$50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}$
$50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}$

$$
80^{\circ} \mathrm{F}-85^{\circ} \mathrm{F}
$$

$$
95^{\circ} \mathrm{F}-110^{\circ} \mathrm{F}
$$

$$
120^{\circ} \mathrm{F}-220^{\circ} \mathrm{F}
$$

$120^{\circ} \mathrm{F}-140^{\circ} \mathrm{F}$ or higher
$212^{\circ} \mathrm{F}$ or higher
$212^{\circ} \mathrm{F}$ or higher; hotter is better $300^{\circ} \mathrm{F}$ or higher

How Buildings Use Heat - An Example

- Preheat Ventilation Air
- Reheat
- Space Heat
- Radiant slabs
- Air
- Finned tube radiation
- Drive Processes
- Domestic Hot Water
- Humidification
- Cooling
- Sterilization
$50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}$
$50^{\circ} \mathrm{F}-75^{\circ} \mathrm{F}$
$80^{\circ} \mathrm{F}-85^{\circ} \mathrm{F}$
$95^{\circ} \mathrm{F}-110^{\circ} \mathrm{F}$
$120^{\circ} \mathrm{F}-220^{\circ} \mathrm{F}$
$120^{\circ} \mathrm{F}-140^{\circ} \mathrm{F}$ or higher
$212^{\circ} \mathrm{F}$ or higher
$212^{\circ} \mathrm{F}$ or higher; hotter is better
$300^{\circ} \mathrm{F}$ or higher

A Preheat Coil Can Do Its Thing with $100^{\circ} \mathrm{F}$ Water or Less (i.e. Lower Grade Heat)

https://tinyurl.com/GreenheckCoilSelection

https://tinyurl.com/LowTempHW

f Coil Selection - C-3
\square
Review Selection
Review the details of this selection. If everything is in order, press "Finish" to complete. Otherwise, press "Back" to revise your selection.
Performance Constuction / Notes | Comment | Pricing |

Application	Hot water	Fluid
Model	HW58501809-18×38.RH	Entering fluid temp. (${ }^{\circ} \mathrm{F}$)
Air flow (SCFM)	1185	Leaving fluid temp. (F)
Allitude ((tt)	0	Fluid delta temp. (${ }^{\text {F }}$)
Capacity (MBH)	53.4	Fluid flow rate (GPM)
Entering ait temp. (${ }^{\text {F }}$)	53.0	Fluid velocity (fts).
Leaving ait temp. (${ }^{\text {F }}$)	94.6	Fluid pressure drop (ft of water)
Face velocity (tt/min)	249	Fluid fouling factor (hrffl ${ }^{\circ} \mathrm{F} / \mathrm{B}$ tu)

Air pressure drop (in of water)
0.03
0.00000
Fluid

Entering fluid temp. (${ }^{\circ} \mathrm{F}$ Leaving fluid temp. (${ }^{*} \mathrm{~F}$] Fluid delta temp. ('F)

Fluid velocity (ft/s)
Fluid pressure drop (t of water)
Fluid fouling factor ($\mathrm{h} \cdot \mathrm{fl}{ }^{\circ} \mathrm{F} / \mathrm{B}$ tu)
Fluid freezing temp. [${ }^{*}$ F)

A Reheat Coil Selected for Space Heating Can Do Reheat With Much Cooler Water (i.e. Lower Grade Heat)

https://tinyurl.com/GreenheckCoilSelection

https://tinyurl.com/LowTempHW

f Coil Selection - C-3
Review Selection
Review the details of this selection. If everything is in order, press "Finish" to complete. Otherwise, press "Back" to revise your selection.
Performance \mid Construction / Notes | Comment \mid Pricing |
Application ... Hot wate

Model
Air flow (SCFM)
Altitude (ft)
Capacity (MBH)
Entering air temp. (${ }^{\mathrm{F}}$)
Leaving air temp. (${ }^{\circ} \mathrm{F}$)
Face velocity (ft/min)
Air pressure drop (in of water)
Air fouling factor ($\mathrm{h} \cdot \mathrm{fl} \mathrm{e}^{\circ} \mathrm{F} / \mathrm{Btu}$)

Fluid
Entering fluid temp. (${ }^{\circ} \mathrm{F}$]
Leaving fluid temp. (${ }^{\circ} \mathrm{F}$]
Fluid delta temp. (${ }^{\circ} \mathrm{F}$)
Fluid flow rate (GPM)
Fluid velocity (ft / s)
Fluid pressure drop (ft of water)
Fluid fouling factor ($\mathrm{h} \cdot \mathrm{fl} \mathrm{P}^{\circ} \mathrm{F} / \mathrm{Btu}$)
Fluid freezing temp. [${ }^{*}$ F)

Questions?

