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A 1912 Vintage
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FIG. 2. n'mcnme REEDS AS MOUNTED IN FRAHM VIBRATION
TAOHOMETERS

Image from August 1912 Steam; http://tinyurl.com/August-1912-Steam
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Analog vs. Digital

Digital
Discrete units
1
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Sensors vs.
Transmitters

Sensor:
Simple device
Typically driven by a
fundamental principle
Often a low level (low
magnitude) output

- TEMPTRAN™
BLE TEMPERATURE TRANSMITTER and HOUSING

m %NTTBOEFWON?EN BI1 RANGE: 300 (o 130,0°F

 OHM P 4mA= B00°Fe -1 1°C= 905766 LJ

| QUTRUT: 4 10 20 MA 20mAs 190.0%Fa 44101205600 C2

RANGEABILITY: ZERO BO“F TO 212°F (-:46°C TO 100°C)
BFMI 30°F TO 320°F ( 174C TO 180°C)

| ‘o00ohm Bt 1 } POWER 9.4 - 35 VDC (NON-POLORIZED)

a DIC: 1216
1) sensor




Sensors
Transmitter

 MIULBERRY




Transmitter:

Complex device

Scales up the low level
signal

May “condition” it (set a
span, linearize it, etc.)
Typically provides a
standard output (4-20
ma, 1-5 vdc, 2-10 vdc,
3-15 psi, etc.)
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Why Transmitters?

Effect of length of lead wire on RTD measurements

« Distance to the sensor - 100 ft

 Wire size - 22 AWG

« Specific resistance - 0.01650hms per foot at 25°C

« Total lead length in series with the RTD — 200 ft

The added resistance from the length of wire is 3.3 ohms.

With an average RTF sensitivity of 4.7880 ohms per°C, the
equivalent temperature associated with lead resistance is
1.24 °F
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Why Transmitters?

Effect of temperature change on RTD measurements on a
rooftop unit where the conduit is run outdoors in the Midwest

Minimum temperature - minus 20°F
Maximum temperature - 105°F (assuming no solar effects)
Temperature change - 125°F or 69°C

Resistance temperature coefficient for copper - 0.0043 ohms
per ohm per °C

For the temperature variability stated, the corresponding change
iIn RTD resistance is 0.98 ohms.

This change in resistance translates to a 0.37°F change in
Indicated temperature due to the outdoor temperature change
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PDNWith Transmitter
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Pressu reasa P—-r—oxy for-\ --eloc:|ty
: ' Output Varlatlon Wlth VeIOC|ty

Some transmitters provide
a square root extractor and
scaling factor to allow a
velocity pressure signal to
be transmitted as a velocity
signal
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5
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D
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o
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Velocity
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Sensing What is Really Going On

Another Thing:

If you mix 1 gallon of 50°F
water with 99 gallons of 100°F
water, do you get 75°F water?
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Sensing What is Really Going On

Another Thing: The Answer:

If you mix 1 gallon of 50°F No, you get 100 gallons of

water with 99 gallons of 100°F water at about 99.5°F (even

water, do you get 75°F water? though the average of the
temperatures is 75°F) because
the mass of the water comes
Into play

Averaging sensors assume a uniform distribution of flow across the

sensing element

« This is generally not the case due to the “bullet” shape of the fully
developed velocity profile for the air and water flowing in our
systems.

« This s hardly ever the case in mixed air plenums or other
locations where two fluid streams are mixing.
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Sensing What is Really Going On

For more about mixing and temperature stratification in a
mixed air plenum, see Economizers—The Physics of a
Mixed Air Plenum and Retrocommissioning Findings:
Economizer Mixed Air Plenum Stratification—Overview, both
at www.Av8rDAS.Wordpress.com

INPUTS




ystems:
, Performance and
ISsioning Issues

nputs

Thermal Effects and Position Effects

Instructor:;

David Sellers

Senior Engineer

Facility Dynamics Engineering
October 23, 2017







Temperature Sensor
Response to Approximately
13 Seconds of Heat from a
Hair Dryer With and With-
out a Themowell
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Temperature Response Without
a Well, °F
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Temperature Response With a
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Thermal Response of a Low
s \]ass and High Mass Sensor to
Immersion in an Ice Bath

ERENNNAmEEE i il Low Mass Sensor = Type K Bead Style
I Sensors B8 Thermocouple, Omega TJ48-CASS-
1L l in steam W 116E-12-SB-SMPW-M (Lower)

| High Mass Sensor = Copper Sheathed
Thermistor, Onset TMC50-HD (Upper)

i
€)]
o

—

w

o
L

Temperature, °F
o

<o)
o

Low Mass Sensor
Sensors in M
ice bath ]
SIVEE \H 1 High Mass Sensor
-

GO R— Immersion Time +/- 1
10:31:50 10:32:10 10:32:30 10:32:50 Second
Time; hh:mm:ss
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for video clips and details




For More on Thermal Lags

More details and examples of thermal lags can be found in
the blog post titled 4-20 ma Current Loop Experiments —
Thermal Mass Effects on my blog at
www.Av8rDAS . Wordpress.com
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Providing a second well
next to a pipe mounted
sensor allows you to
iInsert a calibration
standard that sees the

same conditions

The same is true for other
sensors like pressure
sensors (provide a
second service valve for
calibration)







Mounting Position Can..' :,_@ Importént
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Mounting Position Can Be Important
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Mounting Positions@an Be Important

for video clips and details




For More on Position Effects

More details and examples of position effect can be found
in the blog posts titled Mounting Position Effects: +30/-90°
from vertical = +8/-3% Accuracy and 4-20 ma Current Loop
Experiments — Position Sensitivity on my blog at
www.Av8rDAS.Wordpress.com
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Factory Calibration

A good start

Addresses the factory
provided components

Does not address the
potential field impacts

Position effect
Lags

Lead resistance
A to D conversion
D to A conversion
COV limits
Bifocals

INPUTS

i 5 September, 2015

EMERSON.

Process Management

Customer Information

Name: |LLUMINATE
PO:

Device Information
Device Type:
Tag No:

Serial No:
Model No:

Output: L

Calibration Data
Sensor 1 Pt100 00385C2 4 Wire

listed prod
ment us

ROSEMOUNT

Emerson Process Management
Rosemount Inc.

1, MN U

Calibration Data Sheet Consistent with ISO 10474 3.1 or EN 10204 3.1

Manufacturer Information

Sales Order: 4
Line: 1

Calibration Information

Factory: C

Station Name:
Operator 1D
Calibration Dat

0.00 TO 100.00 DEG C

Analog Output

rds and Technology. The calibration system was
1-1994

4-TEMP_RTC_1




Thermocouple Calibration

Calibration Standard - Fluke 9102S Drywell Bath
SIN 85A281

15

10 y = -3E-05x2 + 0.0128x - 0.0657 |

= 0.9441 }-

Ty,
‘‘‘‘‘

y = -2E-05x2 + 0.0026x - 0. 1325L

R2 = O 9176 |
15
1 —8—Four-in-One Sheathed Type K Thermocouple
1 —e—Fluke 189 Thermocouple
2.0 1 e Poly. (Four-in-One Sheathed Type K Thermocouple)

- Poly. (Fluke 189 Thermocouple)




Static Pressure, in.w.c.
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Calibration
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I ~ Transmitter Operating Curve
| | . Diaphram Type Static Pressure Transmitter
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Current Loop, ma
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Static Pressure, in.w.c.
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—-m--NIST Calibration

| —— Transmitter Opém’rihg Curve
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" Transmitter Operating Curve

__ Diaphram Type Static Pressure Transmitter
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Current Loop, ma
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Un-Calibration
Use an Un-calibrated Standard




Un-Calibration
Misread Your Instrument

Trerice : 3
ouls 02 =3 Trerice
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Un-Calibration
gMisread Your Instrument
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Static Pressure, in.w.c.

18 1
16 4

14 4

———Plus Tolerance Line

12 1
0.8+

00 4+— LR SR TP E

| —— Transmitter Opém’ririg Curve
22

1 —  —Minus Tolerance Line
20 4

- Transmitter is indicating
but when

- comparing it to a
manometer, because o f
parallax, the control tech
reads itas 0.78 in.w.c.
~ Transmitter Operating Curve
__ Diaphram Type Static Pressure Transmitter |

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Current Loop, ma
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Static Pressure, in.w.c.
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1 —  —Minus Tolerance Line
20 4
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1.2 94

10 4
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0.0 -

08:=

A Field Tech Adjustment to Match
U-tube Manometer
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Current Loop, ma



Static Pressure, in.w.c.

22 1

1 —  —Minus Tolerance Line
20 4

1.2 94

10 4

18 1

08:=

———Plus Tolerance Line

A Field Tech Adjustment to Match

U-tube Manometer

Transmitter Opém’riﬁg Curve

... and “span”
adjustments are madeto == .
bring the transmitter EEE AR maw
reading into agreement 7
with the observation
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Current Loop, ma



Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.

24

2.2

2.0

1.8

1.6

14

1.2

10

0.8

0.6

04

0.2

0.0

1 —  — Minus Tolerance Line

———Plus Tolerance Line

——--k--Field Tech Adjustment Yo Match

U-tube Manometer

—Drift After Three Years

¢ Indicated Reading Compared to an
- — = = Actuatl Value of 10 inw . :

Transmitter Opém’riﬁg Curve

.....................

” An offset returns the

transmitter to an

~ operating profile that is:
_ » Right at one point

 Accurate over a part

of the range

| ............ ..... . =
| Diaphram T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

Current Loop, ma



Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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Current Loop, ma

- Calibrate against a
- known reference at the

high end of the range

-« Quality of the

reference = important



Static Pressure, in.w.c.
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Static Pressure, in.w.c.

- Calibrate against a

- known reference at the
high end of the range

-« Quality of the

reference = important

Transmit
. Diaphram T

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
Current Loop, ma
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Static Pressure, in.w.c.
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Static Pressure, in.w.c.
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-« Quality of the

reference = important

Transmrt » Set the span to match

the known parameter
* Assumes linearity
over the range



Static Pressure, in.w.c.
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« Set 55°F
 Reads 2°F low

Discharge Controller
« Set 55°F
« Reads "2°F high

Relative Calibration/Accuracy
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Discharge Controller
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« Set 55°F
 Reads 2°F low

Discharge Controller
« Set 55°F
« Reads "2°F high
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« Set 55°F
 Reads 2°F low

Discharge Controller
« Set 55°F
« Reads "2°F high

Relative Calibration/Accuracy
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« Set 55°F
 Reads 2°F low

Discharge Controller
« Set 55°F
« Reads "2°F high

Bottom Line:

Because of relative vs. absolute accuracy, two sensors
that met their specs (+/-0.5°F accuracy) took air that was
the temperature you desired and used energy to heat and
cool it to deliver it at the wrong temperature

Relative Calibration/Accuracy
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Similar Issues Exist for Other Sensing
Technologies; Measuring Flow For Example

« Many flow measurement systems are velocity pressure
based

* Velocity pressure varies as the square of the flow

 A50% flow reduction reduces the measured signal to
25% of what it was at 100% flow

Flow sensors assume a uniform velocity profile

 For many HVAC systems, the conditions entering and
leaving the flow sensor can distort the flow profile and
thus the accuracy of the measurement

In the video that follows, watch the waves in the

stream as the water approaches and departs from the
rocks in it
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Flow Calibration; One Point Doesn’t Fit All

‘ —
% > Bottom line: flow calibration

curve iIs based on a uniform,

_[ non-varying flow profile

Flow sensors calibration curves established by factory test
Damper held fully open for the entire flow range
Flow varied by varying fan speed on the fan in the test rig
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Flow Calibration; One Point Doesn’t Fit All

But in the real world, the
damper is seldom if ever wide
open

In the real world, with a good inlet condition and a wide open
damper, things tend to match up pretty well
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Flow Calibration; One Point Doesn’t Fit All

But in the real world, the
damper is seldom if ever wide
open

(but at least the inlet
ducts are straight

In the real world, with a good inlet condition and a wide open
damper, things tend to match up pretty well
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Flow Calibration; One Point Doesn’t Fit All

But in the real world, the
damper is seldom if ever wide

open
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In the real world, with a good inlet condition and a wide open
damper, things tend to match up pretty well
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Flow Calibration; One Point Doesn’t Fit All

As the terminal unit damper begins to throttle the flow profile
upstream of it begins to distort because the air is directed towards
the sides of the box and accelerated by the closing damper




Flow Calibration; One Point Doesn’t Fit All
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Flow Calibration; One Point Doesn’t Fit All

Calibrations based on at least two data points representative of the
actual extreme operating conditions of the terminal unit will
generally provide better results vs. a one point calibration
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Field Data from the “Show Me” State

Building Control System Data

Set point 1,800 cfm

Indicated Flow 1,835 cfm
(102% of set point)

Set point 700 cfm

Indicated flow 717 cfm
(102% of set point)

Field Test Data (Traverse basis)
Set point 1,800 cfm
Traversed flow 1,962 cfm
(107% of indicated)
Set point 700 cfm
Traversed flow 1,125 cfm
(157% of indicated)
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Field Data from the “Show Me” State

Read the paper and the presentation from NCBC 2013 at
http://tinyurl.com/RonNCBC2013Presentation and

http://tinyurl.com/RonNCBC2013Paper
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What You See is What You Get;

Maybe ...

... Or maybe not

« There are many elements between the sensor and the observer
and the observer and the actuator

« All of them can impact accuracy, precision, and performance

Actuator

i
‘Transmitter “

Network | |
Sensor Device Work Station l

Controller
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What You Sense is What You Get;

AC-3, January 6, 2006

5 minute data
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What You Sense is What You Get;
Maybe ...

AC-3, January 6, 2006

1 minute data
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What You Sense is What You Get;
Or Maybe Not!

AC-3, January 6, 2006
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What You Sense is What You Get;
Or Maybe Not!

AC-3, January 6, 2006
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Bottom Lines

To avoid aliasing, you need to sample a process at twice the frequency
of the fastest disturbance

« At this sampling rate, the wave form will be about the right shape
* |t may be shifted in time from the actual wave form depending on
where the samples were taken in the cycle

The faster you sample the waveform, the closer your data will be to
matching the real time disturbance

For more on aliasing, see Aliasing and Other Factors Affecting the
Accuracy of Field Data at www.Av8rDAS.Wordpress.com
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The Nyquist Theorem a.k.a the Sampling Theorem
The Theory Behind the Generalization

Where:

f. = The sampling frequency
f. = The highest frequency contained in the signal

In words:

The sampling frequency should be at least twice the highest
frequency contained in the signal.
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Aliasing; Also a Concern with Binary Data;
An Example

« A data logger has been installed to log feed water pump
operation to develop a boiler load profile

* See Assessing Steam Consumption with an Alarm
Clock blog posts for the technique

 http://tinyurl.com/LoadProfile

« Sampling time is critical in terms of having the logger
capture an accurate picture of the true operating pattern

* |n general, the logger needs to sample at least twice

as fast as the shortest disturbance in the process you
are observing
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Aliasing; Also a Concern with Binary Data;
An Example

The slides that follow use a spreadsheet model to compare
the number of pump cycles and total operating time
predicted by data from a logger with the real time data
stream

* The logger only knows what it sees at the time it takes its

sample
* The logger is not averaging data between samples

« The logger sampling time starts out at twice the feed
water pump run cycle time and is reduced to one third of
the feed water pump run cycle time
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. Logger sampling frequency - 60 seconds Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = 3 =
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 660 seconds

.. Logger based cycles - 11
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. Logger sampling frequency - 45 seconds Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = 3 =
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 630 seconds

.. Logger based cycles - 14
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. Logger sampling frequency - 35 seconds Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = 3 =
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 630 seconds

.. Logger based cycles - 18
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. Logger sampling frequency - 15 seconds Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = 3 =
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 630 seconds

.. Logger based cycles - 21
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. Logger sampling frequency - 10 seconds Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = 3 =
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 630 seconds

.. Logger based cycles - 21
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| . Logger sampling frequency - 5 seconds i Ac‘l‘ual run time - 630 seconds
Real Time Feed Water Pump Amps = I :
vs. Logged Amps Feedwater pump on time - 30 seconds . Logger based run time - 630 seconds

.. Logger based cycles - 21
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For More on Aliasing

More details and examples of alisasing can be found in the
blog post titled Aliasing and Other Factors Affecting the
Accuracy of Field Data on my blog at
www.Av8rDAS.Wordpress.com
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